Coverage Report

Created: 2024-07-09 17:50

/workdir/bitcoin/src/net_processing.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-2022 The Bitcoin Core developers
3
// Distributed under the MIT software license, see the accompanying
4
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6
#include <net_processing.h>
7
8
#include <addrman.h>
9
#include <banman.h>
10
#include <blockencodings.h>
11
#include <blockfilter.h>
12
#include <chainparams.h>
13
#include <consensus/amount.h>
14
#include <consensus/validation.h>
15
#include <deploymentstatus.h>
16
#include <hash.h>
17
#include <headerssync.h>
18
#include <index/blockfilterindex.h>
19
#include <kernel/chain.h>
20
#include <kernel/mempool_entry.h>
21
#include <logging.h>
22
#include <merkleblock.h>
23
#include <netbase.h>
24
#include <netmessagemaker.h>
25
#include <node/blockstorage.h>
26
#include <node/timeoffsets.h>
27
#include <node/txreconciliation.h>
28
#include <node/warnings.h>
29
#include <policy/fees.h>
30
#include <policy/policy.h>
31
#include <policy/settings.h>
32
#include <primitives/block.h>
33
#include <primitives/transaction.h>
34
#include <random.h>
35
#include <reverse_iterator.h>
36
#include <scheduler.h>
37
#include <streams.h>
38
#include <sync.h>
39
#include <tinyformat.h>
40
#include <txmempool.h>
41
#include <txorphanage.h>
42
#include <txrequest.h>
43
#include <util/check.h>
44
#include <util/strencodings.h>
45
#include <util/time.h>
46
#include <util/trace.h>
47
#include <validation.h>
48
49
#include <algorithm>
50
#include <atomic>
51
#include <future>
52
#include <memory>
53
#include <optional>
54
#include <typeinfo>
55
#include <utility>
56
57
/** Headers download timeout.
58
 *  Timeout = base + per_header * (expected number of headers) */
59
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min;
60
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms;
61
/** How long to wait for a peer to respond to a getheaders request */
62
static constexpr auto HEADERS_RESPONSE_TIME{2min};
63
/** Protect at least this many outbound peers from disconnection due to slow/
64
 * behind headers chain.
65
 */
66
static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT = 4;
67
/** Timeout for (unprotected) outbound peers to sync to our chainwork */
68
static constexpr auto CHAIN_SYNC_TIMEOUT{20min};
69
/** How frequently to check for stale tips */
70
static constexpr auto STALE_CHECK_INTERVAL{10min};
71
/** How frequently to check for extra outbound peers and disconnect */
72
static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s};
73
/** Minimum time an outbound-peer-eviction candidate must be connected for, in order to evict */
74
static constexpr auto MINIMUM_CONNECT_TIME{30s};
75
/** SHA256("main address relay")[0:8] */
76
static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
77
/// Age after which a stale block will no longer be served if requested as
78
/// protection against fingerprinting. Set to one month, denominated in seconds.
79
static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
80
/// Age after which a block is considered historical for purposes of rate
81
/// limiting block relay. Set to one week, denominated in seconds.
82
static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
83
/** Time between pings automatically sent out for latency probing and keepalive */
84
static constexpr auto PING_INTERVAL{2min};
85
/** The maximum number of entries in a locator */
86
static const unsigned int MAX_LOCATOR_SZ = 101;
87
/** The maximum number of entries in an 'inv' protocol message */
88
static const unsigned int MAX_INV_SZ = 50000;
89
/** Maximum number of in-flight transaction requests from a peer. It is not a hard limit, but the threshold at which
90
 *  point the OVERLOADED_PEER_TX_DELAY kicks in. */
91
static constexpr int32_t MAX_PEER_TX_REQUEST_IN_FLIGHT = 100;
92
/** Maximum number of transactions to consider for requesting, per peer. It provides a reasonable DoS limit to
93
 *  per-peer memory usage spent on announcements, while covering peers continuously sending INVs at the maximum
94
 *  rate (by our own policy, see INVENTORY_BROADCAST_PER_SECOND) for several minutes, while not receiving
95
 *  the actual transaction (from any peer) in response to requests for them. */
96
static constexpr int32_t MAX_PEER_TX_ANNOUNCEMENTS = 5000;
97
/** How long to delay requesting transactions via txids, if we have wtxid-relaying peers */
98
static constexpr auto TXID_RELAY_DELAY{2s};
99
/** How long to delay requesting transactions from non-preferred peers */
100
static constexpr auto NONPREF_PEER_TX_DELAY{2s};
101
/** How long to delay requesting transactions from overloaded peers (see MAX_PEER_TX_REQUEST_IN_FLIGHT). */
102
static constexpr auto OVERLOADED_PEER_TX_DELAY{2s};
103
/** How long to wait before downloading a transaction from an additional peer */
104
static constexpr auto GETDATA_TX_INTERVAL{60s};
105
/** Limit to avoid sending big packets. Not used in processing incoming GETDATA for compatibility */
106
static const unsigned int MAX_GETDATA_SZ = 1000;
107
/** Number of blocks that can be requested at any given time from a single peer. */
108
static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
109
/** Default time during which a peer must stall block download progress before being disconnected.
110
 * the actual timeout is increased temporarily if peers are disconnected for hitting the timeout */
111
static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT{2s};
112
/** Maximum timeout for stalling block download. */
113
static constexpr auto BLOCK_STALLING_TIMEOUT_MAX{64s};
114
/** Number of headers sent in one getheaders result. We rely on the assumption that if a peer sends
115
 *  less than this number, we reached its tip. Changing this value is a protocol upgrade. */
116
static const unsigned int MAX_HEADERS_RESULTS = 2000;
117
/** Maximum depth of blocks we're willing to serve as compact blocks to peers
118
 *  when requested. For older blocks, a regular BLOCK response will be sent. */
119
static const int MAX_CMPCTBLOCK_DEPTH = 5;
120
/** Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests for. */
121
static const int MAX_BLOCKTXN_DEPTH = 10;
122
static_assert(MAX_BLOCKTXN_DEPTH <= MIN_BLOCKS_TO_KEEP, "MAX_BLOCKTXN_DEPTH too high");
123
/** Size of the "block download window": how far ahead of our current height do we fetch?
124
 *  Larger windows tolerate larger download speed differences between peer, but increase the potential
125
 *  degree of disordering of blocks on disk (which make reindexing and pruning harder). We'll probably
126
 *  want to make this a per-peer adaptive value at some point. */
127
static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
128
/** Block download timeout base, expressed in multiples of the block interval (i.e. 10 min) */
129
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1;
130
/** Additional block download timeout per parallel downloading peer (i.e. 5 min) */
131
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5;
132
/** Maximum number of headers to announce when relaying blocks with headers message.*/
133
static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
134
/** Minimum blocks required to signal NODE_NETWORK_LIMITED */
135
static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
136
/** Window, in blocks, for connecting to NODE_NETWORK_LIMITED peers */
137
static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS = 144;
138
/** Average delay between local address broadcasts */
139
static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h};
140
/** Average delay between peer address broadcasts */
141
static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s};
142
/** Delay between rotating the peers we relay a particular address to */
143
static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h};
144
/** Average delay between trickled inventory transmissions for inbound peers.
145
 *  Blocks and peers with NetPermissionFlags::NoBan permission bypass this. */
146
static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL{5s};
147
/** Average delay between trickled inventory transmissions for outbound peers.
148
 *  Use a smaller delay as there is less privacy concern for them.
149
 *  Blocks and peers with NetPermissionFlags::NoBan permission bypass this. */
150
static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL{2s};
151
/** Maximum rate of inventory items to send per second.
152
 *  Limits the impact of low-fee transaction floods. */
153
static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7;
154
/** Target number of tx inventory items to send per transmission. */
155
static constexpr unsigned int INVENTORY_BROADCAST_TARGET = INVENTORY_BROADCAST_PER_SECOND * count_seconds(INBOUND_INVENTORY_BROADCAST_INTERVAL);
156
/** Maximum number of inventory items to send per transmission. */
157
static constexpr unsigned int INVENTORY_BROADCAST_MAX = 1000;
158
static_assert(INVENTORY_BROADCAST_MAX >= INVENTORY_BROADCAST_TARGET, "INVENTORY_BROADCAST_MAX too low");
159
static_assert(INVENTORY_BROADCAST_MAX <= MAX_PEER_TX_ANNOUNCEMENTS, "INVENTORY_BROADCAST_MAX too high");
160
/** Average delay between feefilter broadcasts in seconds. */
161
static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min};
162
/** Maximum feefilter broadcast delay after significant change. */
163
static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min};
164
/** Maximum number of compact filters that may be requested with one getcfilters. See BIP 157. */
165
static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
166
/** Maximum number of cf hashes that may be requested with one getcfheaders. See BIP 157. */
167
static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
168
/** the maximum percentage of addresses from our addrman to return in response to a getaddr message. */
169
static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23;
170
/** The maximum number of address records permitted in an ADDR message. */
171
static constexpr size_t MAX_ADDR_TO_SEND{1000};
172
/** The maximum rate of address records we're willing to process on average. Can be bypassed using
173
 *  the NetPermissionFlags::Addr permission. */
174
static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1};
175
/** The soft limit of the address processing token bucket (the regular MAX_ADDR_RATE_PER_SECOND
176
 *  based increments won't go above this, but the MAX_ADDR_TO_SEND increment following GETADDR
177
 *  is exempt from this limit). */
178
static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET{MAX_ADDR_TO_SEND};
179
/** The compactblocks version we support. See BIP 152. */
180
static constexpr uint64_t CMPCTBLOCKS_VERSION{2};
181
182
// Internal stuff
183
namespace {
184
/** Blocks that are in flight, and that are in the queue to be downloaded. */
185
struct QueuedBlock {
186
    /** BlockIndex. We must have this since we only request blocks when we've already validated the header. */
187
    const CBlockIndex* pindex;
188
    /** Optional, used for CMPCTBLOCK downloads */
189
    std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
190
};
191
192
/**
193
 * Data structure for an individual peer. This struct is not protected by
194
 * cs_main since it does not contain validation-critical data.
195
 *
196
 * Memory is owned by shared pointers and this object is destructed when
197
 * the refcount drops to zero.
198
 *
199
 * Mutexes inside this struct must not be held when locking m_peer_mutex.
200
 *
201
 * TODO: move most members from CNodeState to this structure.
202
 * TODO: move remaining application-layer data members from CNode to this structure.
203
 */
204
struct Peer {
205
    /** Same id as the CNode object for this peer */
206
    const NodeId m_id{0};
207
208
    /** Services we offered to this peer.
209
     *
210
     *  This is supplied by CConnman during peer initialization. It's const
211
     *  because there is no protocol defined for renegotiating services
212
     *  initially offered to a peer. The set of local services we offer should
213
     *  not change after initialization.
214
     *
215
     *  An interesting example of this is NODE_NETWORK and initial block
216
     *  download: a node which starts up from scratch doesn't have any blocks
217
     *  to serve, but still advertises NODE_NETWORK because it will eventually
218
     *  fulfill this role after IBD completes. P2P code is written in such a
219
     *  way that it can gracefully handle peers who don't make good on their
220
     *  service advertisements. */
221
    const ServiceFlags m_our_services;
222
    /** Services this peer offered to us. */
223
    std::atomic<ServiceFlags> m_their_services{NODE_NONE};
224
225
    /** Protects misbehavior data members */
226
    Mutex m_misbehavior_mutex;
227
    /** Whether this peer should be disconnected and marked as discouraged (unless it has NetPermissionFlags::NoBan permission). */
228
    bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
229
230
    /** Protects block inventory data members */
231
    Mutex m_block_inv_mutex;
232
    /** List of blocks that we'll announce via an `inv` message.
233
     * There is no final sorting before sending, as they are always sent
234
     * immediately and in the order requested. */
235
    std::vector<uint256> m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex);
236
    /** Unfiltered list of blocks that we'd like to announce via a `headers`
237
     * message. If we can't announce via a `headers` message, we'll fall back to
238
     * announcing via `inv`. */
239
    std::vector<uint256> m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex);
240
    /** The final block hash that we sent in an `inv` message to this peer.
241
     * When the peer requests this block, we send an `inv` message to trigger
242
     * the peer to request the next sequence of block hashes.
243
     * Most peers use headers-first syncing, which doesn't use this mechanism */
244
    uint256 m_continuation_block GUARDED_BY(m_block_inv_mutex) {};
245
246
    /** This peer's reported block height when we connected */
247
    std::atomic<int> m_starting_height{-1};
248
249
    /** The pong reply we're expecting, or 0 if no pong expected. */
250
    std::atomic<uint64_t> m_ping_nonce_sent{0};
251
    /** When the last ping was sent, or 0 if no ping was ever sent */
252
    std::atomic<std::chrono::microseconds> m_ping_start{0us};
253
    /** Whether a ping has been requested by the user */
254
    std::atomic<bool> m_ping_queued{false};
255
256
    /** Whether this peer relays txs via wtxid */
257
    std::atomic<bool> m_wtxid_relay{false};
258
    /** The feerate in the most recent BIP133 `feefilter` message sent to the peer.
259
     *  It is *not* a p2p protocol violation for the peer to send us
260
     *  transactions with a lower fee rate than this. See BIP133. */
261
    CAmount m_fee_filter_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
262
    /** Timestamp after which we will send the next BIP133 `feefilter` message
263
      * to the peer. */
264
    std::chrono::microseconds m_next_send_feefilter GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
265
266
    struct TxRelay {
267
        mutable RecursiveMutex m_bloom_filter_mutex;
268
        /** Whether we relay transactions to this peer. */
269
        bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false};
270
        /** A bloom filter for which transactions to announce to the peer. See BIP37. */
271
        std::unique_ptr<CBloomFilter> m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr};
272
273
        mutable RecursiveMutex m_tx_inventory_mutex;
274
        /** A filter of all the (w)txids that the peer has announced to
275
         *  us or we have announced to the peer. We use this to avoid announcing
276
         *  the same (w)txid to a peer that already has the transaction. */
277
        CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001};
278
        /** Set of transaction ids we still have to announce (txid for
279
         *  non-wtxid-relay peers, wtxid for wtxid-relay peers). We use the
280
         *  mempool to sort transactions in dependency order before relay, so
281
         *  this does not have to be sorted. */
282
        std::set<uint256> m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex);
283
        /** Whether the peer has requested us to send our complete mempool. Only
284
         *  permitted if the peer has NetPermissionFlags::Mempool or we advertise
285
         *  NODE_BLOOM. See BIP35. */
286
        bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false};
287
        /** The next time after which we will send an `inv` message containing
288
         *  transaction announcements to this peer. */
289
        std::chrono::microseconds m_next_inv_send_time GUARDED_BY(m_tx_inventory_mutex){0};
290
        /** The mempool sequence num at which we sent the last `inv` message to this peer.
291
         *  Can relay txs with lower sequence numbers than this (see CTxMempool::info_for_relay). */
292
        uint64_t m_last_inv_sequence GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1};
293
294
        /** Minimum fee rate with which to filter transaction announcements to this node. See BIP133. */
295
        std::atomic<CAmount> m_fee_filter_received{0};
296
    };
297
298
    /* Initializes a TxRelay struct for this peer. Can be called at most once for a peer. */
299
    TxRelay* SetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
300
331
    {
301
331
        LOCK(m_tx_relay_mutex);
302
331
        Assume(!m_tx_relay);
303
331
        m_tx_relay = std::make_unique<Peer::TxRelay>();
304
331
        return m_tx_relay.get();
305
331
    };
306
307
    TxRelay* GetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
308
982
    {
309
982
        return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get());
310
982
    };
311
312
    /** A vector of addresses to send to the peer, limited to MAX_ADDR_TO_SEND. */
313
    std::vector<CAddress> m_addrs_to_send GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
314
    /** Probabilistic filter to track recent addr messages relayed with this
315
     *  peer. Used to avoid relaying redundant addresses to this peer.
316
     *
317
     *  We initialize this filter for outbound peers (other than
318
     *  block-relay-only connections) or when an inbound peer sends us an
319
     *  address related message (ADDR, ADDRV2, GETADDR).
320
     *
321
     *  Presence of this filter must correlate with m_addr_relay_enabled.
322
     **/
323
    std::unique_ptr<CRollingBloomFilter> m_addr_known GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
324
    /** Whether we are participating in address relay with this connection.
325
     *
326
     *  We set this bool to true for outbound peers (other than
327
     *  block-relay-only connections), or when an inbound peer sends us an
328
     *  address related message (ADDR, ADDRV2, GETADDR).
329
     *
330
     *  We use this bool to decide whether a peer is eligible for gossiping
331
     *  addr messages. This avoids relaying to peers that are unlikely to
332
     *  forward them, effectively blackholing self announcements. Reasons
333
     *  peers might support addr relay on the link include that they connected
334
     *  to us as a block-relay-only peer or they are a light client.
335
     *
336
     *  This field must correlate with whether m_addr_known has been
337
     *  initialized.*/
338
    std::atomic_bool m_addr_relay_enabled{false};
339
    /** Whether a getaddr request to this peer is outstanding. */
340
    bool m_getaddr_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
341
    /** Guards address sending timers. */
342
    mutable Mutex m_addr_send_times_mutex;
343
    /** Time point to send the next ADDR message to this peer. */
344
    std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
345
    /** Time point to possibly re-announce our local address to this peer. */
346
    std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
347
    /** Whether the peer has signaled support for receiving ADDRv2 (BIP155)
348
     *  messages, indicating a preference to receive ADDRv2 instead of ADDR ones. */
349
    std::atomic_bool m_wants_addrv2{false};
350
    /** Whether this peer has already sent us a getaddr message. */
351
    bool m_getaddr_recvd GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
352
    /** Number of addresses that can be processed from this peer. Start at 1 to
353
     *  permit self-announcement. */
354
    double m_addr_token_bucket GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1.0};
355
    /** When m_addr_token_bucket was last updated */
356
    std::chrono::microseconds m_addr_token_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){GetTime<std::chrono::microseconds>()};
357
    /** Total number of addresses that were dropped due to rate limiting. */
358
    std::atomic<uint64_t> m_addr_rate_limited{0};
359
    /** Total number of addresses that were processed (excludes rate-limited ones). */
360
    std::atomic<uint64_t> m_addr_processed{0};
361
362
    /** Whether we've sent this peer a getheaders in response to an inv prior to initial-headers-sync completing */
363
    bool m_inv_triggered_getheaders_before_sync GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
364
365
    /** Protects m_getdata_requests **/
366
    Mutex m_getdata_requests_mutex;
367
    /** Work queue of items requested by this peer **/
368
    std::deque<CInv> m_getdata_requests GUARDED_BY(m_getdata_requests_mutex);
369
370
    /** Time of the last getheaders message to this peer */
371
    NodeClock::time_point m_last_getheaders_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){};
372
373
    /** Protects m_headers_sync **/
374
    Mutex m_headers_sync_mutex;
375
    /** Headers-sync state for this peer (eg for initial sync, or syncing large
376
     * reorgs) **/
377
    std::unique_ptr<HeadersSyncState> m_headers_sync PT_GUARDED_BY(m_headers_sync_mutex) GUARDED_BY(m_headers_sync_mutex) {};
378
379
    /** Whether we've sent our peer a sendheaders message. **/
380
    std::atomic<bool> m_sent_sendheaders{false};
381
382
    /** When to potentially disconnect peer for stalling headers download */
383
    std::chrono::microseconds m_headers_sync_timeout GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0us};
384
385
    /** Whether this peer wants invs or headers (when possible) for block announcements */
386
    bool m_prefers_headers GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
387
388
    /** Time offset computed during the version handshake based on the
389
     * timestamp the peer sent in the version message. */
390
    std::atomic<std::chrono::seconds> m_time_offset{0s};
391
392
    explicit Peer(NodeId id, ServiceFlags our_services)
393
1.01k
        : m_id{id}
394
1.01k
        , m_our_services{our_services}
395
1.01k
    {}
396
397
private:
398
    mutable Mutex m_tx_relay_mutex;
399
400
    /** Transaction relay data. May be a nullptr. */
401
    std::unique_ptr<TxRelay> m_tx_relay GUARDED_BY(m_tx_relay_mutex);
402
};
403
404
using PeerRef = std::shared_ptr<Peer>;
405
406
/**
407
 * Maintain validation-specific state about nodes, protected by cs_main, instead
408
 * by CNode's own locks. This simplifies asynchronous operation, where
409
 * processing of incoming data is done after the ProcessMessage call returns,
410
 * and we're no longer holding the node's locks.
411
 */
412
struct CNodeState {
413
    //! The best known block we know this peer has announced.
414
    const CBlockIndex* pindexBestKnownBlock{nullptr};
415
    //! The hash of the last unknown block this peer has announced.
416
    uint256 hashLastUnknownBlock{};
417
    //! The last full block we both have.
418
    const CBlockIndex* pindexLastCommonBlock{nullptr};
419
    //! The best header we have sent our peer.
420
    const CBlockIndex* pindexBestHeaderSent{nullptr};
421
    //! Whether we've started headers synchronization with this peer.
422
    bool fSyncStarted{false};
423
    //! Since when we're stalling block download progress (in microseconds), or 0.
424
    std::chrono::microseconds m_stalling_since{0us};
425
    std::list<QueuedBlock> vBlocksInFlight;
426
    //! When the first entry in vBlocksInFlight started downloading. Don't care when vBlocksInFlight is empty.
427
    std::chrono::microseconds m_downloading_since{0us};
428
    //! Whether we consider this a preferred download peer.
429
    bool fPreferredDownload{false};
430
    /** Whether this peer wants invs or cmpctblocks (when possible) for block announcements. */
431
    bool m_requested_hb_cmpctblocks{false};
432
    /** Whether this peer will send us cmpctblocks if we request them. */
433
    bool m_provides_cmpctblocks{false};
434
435
    /** State used to enforce CHAIN_SYNC_TIMEOUT and EXTRA_PEER_CHECK_INTERVAL logic.
436
      *
437
      * Both are only in effect for outbound, non-manual, non-protected connections.
438
      * Any peer protected (m_protect = true) is not chosen for eviction. A peer is
439
      * marked as protected if all of these are true:
440
      *   - its connection type is IsBlockOnlyConn() == false
441
      *   - it gave us a valid connecting header
442
      *   - we haven't reached MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT yet
443
      *   - its chain tip has at least as much work as ours
444
      *
445
      * CHAIN_SYNC_TIMEOUT: if a peer's best known block has less work than our tip,
446
      * set a timeout CHAIN_SYNC_TIMEOUT in the future:
447
      *   - If at timeout their best known block now has more work than our tip
448
      *     when the timeout was set, then either reset the timeout or clear it
449
      *     (after comparing against our current tip's work)
450
      *   - If at timeout their best known block still has less work than our
451
      *     tip did when the timeout was set, then send a getheaders message,
452
      *     and set a shorter timeout, HEADERS_RESPONSE_TIME seconds in future.
453
      *     If their best known block is still behind when that new timeout is
454
      *     reached, disconnect.
455
      *
456
      * EXTRA_PEER_CHECK_INTERVAL: after each interval, if we have too many outbound peers,
457
      * drop the outbound one that least recently announced us a new block.
458
      */
459
    struct ChainSyncTimeoutState {
460
        //! A timeout used for checking whether our peer has sufficiently synced
461
        std::chrono::seconds m_timeout{0s};
462
        //! A header with the work we require on our peer's chain
463
        const CBlockIndex* m_work_header{nullptr};
464
        //! After timeout is reached, set to true after sending getheaders
465
        bool m_sent_getheaders{false};
466
        //! Whether this peer is protected from disconnection due to a bad/slow chain
467
        bool m_protect{false};
468
    };
469
470
    ChainSyncTimeoutState m_chain_sync;
471
472
    //! Time of last new block announcement
473
    int64_t m_last_block_announcement{0};
474
475
    //! Whether this peer is an inbound connection
476
    const bool m_is_inbound;
477
478
1.01k
    CNodeState(bool is_inbound) : m_is_inbound(is_inbound) {}
479
};
480
481
class PeerManagerImpl final : public PeerManager
482
{
483
public:
484
    PeerManagerImpl(CConnman& connman, AddrMan& addrman,
485
                    BanMan* banman, ChainstateManager& chainman,
486
                    CTxMemPool& pool, node::Warnings& warnings, Options opts);
487
488
    /** Overridden from CValidationInterface. */
489
    void BlockConnected(ChainstateRole role, const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindexConnected) override
490
        EXCLUSIVE_LOCKS_REQUIRED(!m_recent_confirmed_transactions_mutex);
491
    void BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex) override
492
        EXCLUSIVE_LOCKS_REQUIRED(!m_recent_confirmed_transactions_mutex);
493
    void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override
494
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
495
    void BlockChecked(const CBlock& block, const BlockValidationState& state) override
496
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
497
    void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock) override
498
        EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
499
500
    /** Implement NetEventsInterface */
501
    void InitializeNode(CNode& node, ServiceFlags our_services) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
502
    void FinalizeNode(const CNode& node) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex);
503
    bool HasAllDesirableServiceFlags(ServiceFlags services) const override;
504
    bool ProcessMessages(CNode* pfrom, std::atomic<bool>& interrupt) override
505
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
506
    bool SendMessages(CNode* pto) override
507
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, !m_most_recent_block_mutex, g_msgproc_mutex);
508
509
    /** Implement PeerManager */
510
    void StartScheduledTasks(CScheduler& scheduler) override;
511
    void CheckForStaleTipAndEvictPeers() override;
512
    std::optional<std::string> FetchBlock(NodeId peer_id, const CBlockIndex& block_index) override
513
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
514
    bool GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
515
    PeerManagerInfo GetInfo() const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
516
    void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
517
    void RelayTransaction(const uint256& txid, const uint256& wtxid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
518
    void SetBestBlock(int height, std::chrono::seconds time) override
519
0
    {
520
0
        m_best_height = height;
521
0
        m_best_block_time = time;
522
0
    };
523
0
    void UnitTestMisbehaving(NodeId peer_id) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(*Assert(GetPeerRef(peer_id)), ""); };
524
    void ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
525
                        const std::chrono::microseconds time_received, const std::atomic<bool>& interruptMsgProc) override
526
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
527
    void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override;
528
    ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const override;
529
530
private:
531
    /** Consider evicting an outbound peer based on the amount of time they've been behind our tip */
532
    void ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_msgproc_mutex);
533
534
    /** If we have extra outbound peers, try to disconnect the one with the oldest block announcement */
535
    void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
536
537
    /** Retrieve unbroadcast transactions from the mempool and reattempt sending to peers */
538
    void ReattemptInitialBroadcast(CScheduler& scheduler) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
539
540
    /** Get a shared pointer to the Peer object.
541
     *  May return an empty shared_ptr if the Peer object can't be found. */
542
    PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
543
544
    /** Get a shared pointer to the Peer object and remove it from m_peer_map.
545
     *  May return an empty shared_ptr if the Peer object can't be found. */
546
    PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
547
548
    /** Mark a peer as misbehaving, which will cause it to be disconnected and its
549
     *  address discouraged. */
550
    void Misbehaving(Peer& peer, const std::string& message);
551
552
    /**
553
     * Potentially mark a node discouraged based on the contents of a BlockValidationState object
554
     *
555
     * @param[in] via_compact_block this bool is passed in because net_processing should
556
     * punish peers differently depending on whether the data was provided in a compact
557
     * block message or not. If the compact block had a valid header, but contained invalid
558
     * txs, the peer should not be punished. See BIP 152.
559
     */
560
    void MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
561
                                 bool via_compact_block, const std::string& message = "")
562
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
563
564
    /**
565
     * Potentially disconnect and discourage a node based on the contents of a TxValidationState object
566
     */
567
    void MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
568
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
569
570
    /** Maybe disconnect a peer and discourage future connections from its address.
571
     *
572
     * @param[in]   pnode     The node to check.
573
     * @param[in]   peer      The peer object to check.
574
     * @return                True if the peer was marked for disconnection in this function
575
     */
576
    bool MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer);
577
578
    /** Handle a transaction whose result was not MempoolAcceptResult::ResultType::VALID.
579
     * @param[in]   maybe_add_extra_compact_tx    Whether this tx should be added to vExtraTxnForCompact.
580
     *                                            Set to false if the tx has already been rejected before,
581
     *                                            e.g. is an orphan, to avoid adding duplicate entries.
582
     * Updates m_txrequest, m_recent_rejects, m_recent_rejects_reconsiderable, m_orphanage, and vExtraTxnForCompact. */
583
    void ProcessInvalidTx(NodeId nodeid, const CTransactionRef& tx, const TxValidationState& result,
584
                          bool maybe_add_extra_compact_tx)
585
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, cs_main);
586
587
    /** Handle a transaction whose result was MempoolAcceptResult::ResultType::VALID.
588
     * Updates m_txrequest, m_orphanage, and vExtraTxnForCompact. Also queues the tx for relay. */
589
    void ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
590
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, cs_main);
591
592
    struct PackageToValidate {
593
        const Package m_txns;
594
        const std::vector<NodeId> m_senders;
595
        /** Construct a 1-parent-1-child package. */
596
        explicit PackageToValidate(const CTransactionRef& parent,
597
                                   const CTransactionRef& child,
598
                                   NodeId parent_sender,
599
                                   NodeId child_sender) :
600
0
            m_txns{parent, child},
601
0
            m_senders {parent_sender, child_sender}
602
0
        {}
603
604
0
        std::string ToString() const {
605
0
            Assume(m_txns.size() == 2);
606
0
            return strprintf("parent %s (wtxid=%s, sender=%d) + child %s (wtxid=%s, sender=%d)",
607
0
                             m_txns.front()->GetHash().ToString(),
608
0
                             m_txns.front()->GetWitnessHash().ToString(),
609
0
                             m_senders.front(),
610
0
                             m_txns.back()->GetHash().ToString(),
611
0
                             m_txns.back()->GetWitnessHash().ToString(),
612
0
                             m_senders.back());
613
0
        }
614
    };
615
616
    /** Handle the results of package validation: calls ProcessValidTx and ProcessInvalidTx for
617
     * individual transactions, and caches rejection for the package as a group.
618
     */
619
    void ProcessPackageResult(const PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
620
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, cs_main);
621
622
    /** Look for a child of this transaction in the orphanage to form a 1-parent-1-child package,
623
     * skipping any combinations that have already been tried. Return the resulting package along with
624
     * the senders of its respective transactions, or std::nullopt if no package is found. */
625
    std::optional<PackageToValidate> Find1P1CPackage(const CTransactionRef& ptx, NodeId nodeid)
626
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, cs_main);
627
628
    /**
629
     * Reconsider orphan transactions after a parent has been accepted to the mempool.
630
     *
631
     * @peer[in]  peer     The peer whose orphan transactions we will reconsider. Generally only
632
     *                     one orphan will be reconsidered on each call of this function. If an
633
     *                     accepted orphan has orphaned children, those will need to be
634
     *                     reconsidered, creating more work, possibly for other peers.
635
     * @return             True if meaningful work was done (an orphan was accepted/rejected).
636
     *                     If no meaningful work was done, then the work set for this peer
637
     *                     will be empty.
638
     */
639
    bool ProcessOrphanTx(Peer& peer)
640
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
641
642
    /** Process a single headers message from a peer.
643
     *
644
     * @param[in]   pfrom     CNode of the peer
645
     * @param[in]   peer      The peer sending us the headers
646
     * @param[in]   headers   The headers received. Note that this may be modified within ProcessHeadersMessage.
647
     * @param[in]   via_compact_block   Whether this header came in via compact block handling.
648
    */
649
    void ProcessHeadersMessage(CNode& pfrom, Peer& peer,
650
                               std::vector<CBlockHeader>&& headers,
651
                               bool via_compact_block)
652
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
653
    /** Various helpers for headers processing, invoked by ProcessHeadersMessage() */
654
    /** Return true if headers are continuous and have valid proof-of-work (DoS points assigned on failure) */
655
    bool CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer);
656
    /** Calculate an anti-DoS work threshold for headers chains */
657
    arith_uint256 GetAntiDoSWorkThreshold();
658
    /** Deal with state tracking and headers sync for peers that send
659
     * non-connecting headers (this can happen due to BIP 130 headers
660
     * announcements for blocks interacting with the 2hr (MAX_FUTURE_BLOCK_TIME) rule). */
661
    void HandleUnconnectingHeaders(CNode& pfrom, Peer& peer, const std::vector<CBlockHeader>& headers) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
662
    /** Return true if the headers connect to each other, false otherwise */
663
    bool CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const;
664
    /** Try to continue a low-work headers sync that has already begun.
665
     * Assumes the caller has already verified the headers connect, and has
666
     * checked that each header satisfies the proof-of-work target included in
667
     * the header.
668
     *  @param[in]  peer                            The peer we're syncing with.
669
     *  @param[in]  pfrom                           CNode of the peer
670
     *  @param[in,out] headers                      The headers to be processed.
671
     *  @return     True if the passed in headers were successfully processed
672
     *              as the continuation of a low-work headers sync in progress;
673
     *              false otherwise.
674
     *              If false, the passed in headers will be returned back to
675
     *              the caller.
676
     *              If true, the returned headers may be empty, indicating
677
     *              there is no more work for the caller to do; or the headers
678
     *              may be populated with entries that have passed anti-DoS
679
     *              checks (and therefore may be validated for block index
680
     *              acceptance by the caller).
681
     */
682
    bool IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom,
683
            std::vector<CBlockHeader>& headers)
684
        EXCLUSIVE_LOCKS_REQUIRED(peer.m_headers_sync_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
685
    /** Check work on a headers chain to be processed, and if insufficient,
686
     * initiate our anti-DoS headers sync mechanism.
687
     *
688
     * @param[in]   peer                The peer whose headers we're processing.
689
     * @param[in]   pfrom               CNode of the peer
690
     * @param[in]   chain_start_header  Where these headers connect in our index.
691
     * @param[in,out]   headers             The headers to be processed.
692
     *
693
     * @return      True if chain was low work (headers will be empty after
694
     *              calling); false otherwise.
695
     */
696
    bool TryLowWorkHeadersSync(Peer& peer, CNode& pfrom,
697
                                  const CBlockIndex* chain_start_header,
698
                                  std::vector<CBlockHeader>& headers)
699
        EXCLUSIVE_LOCKS_REQUIRED(!peer.m_headers_sync_mutex, !m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
700
701
    /** Return true if the given header is an ancestor of
702
     *  m_chainman.m_best_header or our current tip */
703
    bool IsAncestorOfBestHeaderOrTip(const CBlockIndex* header) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
704
705
    /** Request further headers from this peer with a given locator.
706
     * We don't issue a getheaders message if we have a recent one outstanding.
707
     * This returns true if a getheaders is actually sent, and false otherwise.
708
     */
709
    bool MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
710
    /** Potentially fetch blocks from this peer upon receipt of a new headers tip */
711
    void HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header);
712
    /** Update peer state based on received headers message */
713
    void UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer, const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
714
        EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
715
716
    void SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req);
717
718
    /** Register with TxRequestTracker that an INV has been received from a
719
     *  peer. The announcement parameters are decided in PeerManager and then
720
     *  passed to TxRequestTracker. */
721
    void AddTxAnnouncement(const CNode& node, const GenTxid& gtxid, std::chrono::microseconds current_time)
722
        EXCLUSIVE_LOCKS_REQUIRED(::cs_main);
723
724
    /** Send a message to a peer */
725
0
    void PushMessage(CNode& node, CSerializedNetMsg&& msg) const { m_connman.PushMessage(&node, std::move(msg)); }
726
    template <typename... Args>
727
    void MakeAndPushMessage(CNode& node, std::string msg_type, Args&&... args) const
728
3.02k
    {
729
3.02k
        m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
730
3.02k
    }
net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<bool, unsigned long const&>(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool&&, unsigned long const&) const
Line
Count
Source
728
157
    {
729
157
        m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
730
157
    }
Unexecuted instantiation: net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<std::vector<CInv, std::allocator<CInv> >&>(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<CInv, std::allocator<CInv> >&) const
net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<int const&, unsigned long&, long const&, unsigned long&, ParamsWrapper<CNetAddr::SerParams, CService>, unsigned long&, ParamsWrapper<CNetAddr::SerParams, CService>, unsigned long&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >&, int const&, bool const&>(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, int const&, unsigned long&, long const&, unsigned long&, ParamsWrapper<CNetAddr::SerParams, CService>&&, unsigned long&, ParamsWrapper<CNetAddr::SerParams, CService>&&, unsigned long&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >&, int const&, bool const&) const
Line
Count
Source
728
781
    {
729
781
        m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
730
781
    }
net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<>(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) const
Line
Count
Source
728
1.46k
    {
729
1.46k
        m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
730
1.46k
    }
net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<unsigned int const&, unsigned long const&>(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, unsigned int const&, unsigned long const&) const
Line
Count
Source
728
264
    {
729
264
        m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
730
264
    }
net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<Span<unsigned char const> >(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, Span<unsigned char const>&&) const
Line
Count
Source
728
35
    {
729
35
        m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
730
35
    }
net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<CBlockLocator const&, uint256>(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, CBlockLocator const&, uint256&&) const
Line
Count
Source
728
85
    {
729
85
        m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
730
85
    }
Unexecuted instantiation: net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<ParamsWrapper<TransactionSerParams, CTransaction const> >(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, ParamsWrapper<TransactionSerParams, CTransaction const>&&) const
Unexecuted instantiation: net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<Span<unsigned char> >(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, Span<unsigned char>&&) const
Unexecuted instantiation: net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<ParamsWrapper<TransactionSerParams, CBlock const> >(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, ParamsWrapper<TransactionSerParams, CBlock const>&&) const
Unexecuted instantiation: net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<CMerkleBlock&>(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, CMerkleBlock&) const
Unexecuted instantiation: net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<CBlockHeaderAndShortTxIDs const&>(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, CBlockHeaderAndShortTxIDs const&) const
Unexecuted instantiation: net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<CBlockHeaderAndShortTxIDs&>(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, CBlockHeaderAndShortTxIDs&) const
Unexecuted instantiation: net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<BlockTransactions&>(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, BlockTransactions&) const
Unexecuted instantiation: net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<std::vector<CBlockHeader, std::allocator<CBlockHeader> > >(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::vector<CBlockHeader, std::allocator<CBlockHeader> >&&) const
Unexecuted instantiation: net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<ParamsWrapper<TransactionSerParams, std::vector<CBlock, std::allocator<CBlock> > > >(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, ParamsWrapper<TransactionSerParams, std::vector<CBlock, std::allocator<CBlock> > >&&) const
Unexecuted instantiation: net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<BlockTransactionsRequest&>(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, BlockTransactionsRequest&) const
net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<unsigned long&>(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, unsigned long&) const
Line
Count
Source
728
139
    {
729
139
        m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
730
139
    }
Unexecuted instantiation: net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<BlockFilter const&>(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, BlockFilter const&) const
Unexecuted instantiation: net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<unsigned char&, uint256, uint256&, std::vector<uint256, std::allocator<uint256> >&>(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, unsigned char&, uint256&&, uint256&, std::vector<uint256, std::allocator<uint256> >&) const
Unexecuted instantiation: net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<unsigned char&, uint256, std::vector<uint256, std::allocator<uint256> >&>(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, unsigned char&, uint256&&, std::vector<uint256, std::allocator<uint256> >&) const
Unexecuted instantiation: net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<ParamsWrapper<CAddress::SerParams, std::vector<CAddress, std::allocator<CAddress> > > >(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, ParamsWrapper<CAddress::SerParams, std::vector<CAddress, std::allocator<CAddress> > >&&) const
net_processing.cpp:void (anonymous namespace)::PeerManagerImpl::MakeAndPushMessage<long&>(CNode&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, long&) const
Line
Count
Source
728
108
    {
729
108
        m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
730
108
    }
731
732
    /** Send a version message to a peer */
733
    void PushNodeVersion(CNode& pnode, const Peer& peer);
734
735
    /** Send a ping message every PING_INTERVAL or if requested via RPC. May
736
     *  mark the peer to be disconnected if a ping has timed out.
737
     *  We use mockable time for ping timeouts, so setmocktime may cause pings
738
     *  to time out. */
739
    void MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now);
740
741
    /** Send `addr` messages on a regular schedule. */
742
    void MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
743
744
    /** Send a single `sendheaders` message, after we have completed headers sync with a peer. */
745
    void MaybeSendSendHeaders(CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
746
747
    /** Relay (gossip) an address to a few randomly chosen nodes.
748
     *
749
     * @param[in] originator   The id of the peer that sent us the address. We don't want to relay it back.
750
     * @param[in] addr         Address to relay.
751
     * @param[in] fReachable   Whether the address' network is reachable. We relay unreachable
752
     *                         addresses less.
753
     */
754
    void RelayAddress(NodeId originator, const CAddress& addr, bool fReachable) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
755
756
    /** Send `feefilter` message. */
757
    void MaybeSendFeefilter(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
758
759
    FastRandomContext m_rng GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
760
761
    FeeFilterRounder m_fee_filter_rounder GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
762
763
    const CChainParams& m_chainparams;
764
    CConnman& m_connman;
765
    AddrMan& m_addrman;
766
    /** Pointer to this node's banman. May be nullptr - check existence before dereferencing. */
767
    BanMan* const m_banman;
768
    ChainstateManager& m_chainman;
769
    CTxMemPool& m_mempool;
770
    TxRequestTracker m_txrequest GUARDED_BY(::cs_main);
771
    std::unique_ptr<TxReconciliationTracker> m_txreconciliation;
772
773
    /** The height of the best chain */
774
    std::atomic<int> m_best_height{-1};
775
    /** The time of the best chain tip block */
776
    std::atomic<std::chrono::seconds> m_best_block_time{0s};
777
778
    /** Next time to check for stale tip */
779
    std::chrono::seconds m_stale_tip_check_time GUARDED_BY(cs_main){0s};
780
781
    node::Warnings& m_warnings;
782
    TimeOffsets m_outbound_time_offsets{m_warnings};
783
784
    const Options m_opts;
785
786
    bool RejectIncomingTxs(const CNode& peer) const;
787
788
    /** Whether we've completed initial sync yet, for determining when to turn
789
      * on extra block-relay-only peers. */
790
    bool m_initial_sync_finished GUARDED_BY(cs_main){false};
791
792
    /** Protects m_peer_map. This mutex must not be locked while holding a lock
793
     *  on any of the mutexes inside a Peer object. */
794
    mutable Mutex m_peer_mutex;
795
    /**
796
     * Map of all Peer objects, keyed by peer id. This map is protected
797
     * by the m_peer_mutex. Once a shared pointer reference is
798
     * taken, the lock may be released. Individual fields are protected by
799
     * their own locks.
800
     */
801
    std::map<NodeId, PeerRef> m_peer_map GUARDED_BY(m_peer_mutex);
802
803
    /** Map maintaining per-node state. */
804
    std::map<NodeId, CNodeState> m_node_states GUARDED_BY(cs_main);
805
806
    /** Get a pointer to a const CNodeState, used when not mutating the CNodeState object. */
807
    const CNodeState* State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
808
    /** Get a pointer to a mutable CNodeState. */
809
    CNodeState* State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
810
811
    uint32_t GetFetchFlags(const Peer& peer) const;
812
813
    std::atomic<std::chrono::microseconds> m_next_inv_to_inbounds{0us};
814
815
    /** Number of nodes with fSyncStarted. */
816
    int nSyncStarted GUARDED_BY(cs_main) = 0;
817
818
    /** Hash of the last block we received via INV */
819
    uint256 m_last_block_inv_triggering_headers_sync GUARDED_BY(g_msgproc_mutex){};
820
821
    /**
822
     * Sources of received blocks, saved to be able punish them when processing
823
     * happens afterwards.
824
     * Set mapBlockSource[hash].second to false if the node should not be
825
     * punished if the block is invalid.
826
     */
827
    std::map<uint256, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
828
829
    /** Number of peers with wtxid relay. */
830
    std::atomic<int> m_wtxid_relay_peers{0};
831
832
    /** Number of outbound peers with m_chain_sync.m_protect. */
833
    int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
834
835
    /** Number of preferable block download peers. */
836
    int m_num_preferred_download_peers GUARDED_BY(cs_main){0};
837
838
    /** Stalling timeout for blocks in IBD */
839
    std::atomic<std::chrono::seconds> m_block_stalling_timeout{BLOCK_STALLING_TIMEOUT_DEFAULT};
840
841
    /** Check whether we already have this gtxid in:
842
     *  - mempool
843
     *  - orphanage
844
     *  - m_recent_rejects
845
     *  - m_recent_rejects_reconsiderable (if include_reconsiderable = true)
846
     *  - m_recent_confirmed_transactions
847
     * Also responsible for resetting m_recent_rejects and m_recent_rejects_reconsiderable if the
848
     * chain tip has changed.
849
     *  */
850
    bool AlreadyHaveTx(const GenTxid& gtxid, bool include_reconsiderable)
851
        EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_recent_confirmed_transactions_mutex);
852
853
    /**
854
     * Filter for transactions that were recently rejected by the mempool.
855
     * These are not rerequested until the chain tip changes, at which point
856
     * the entire filter is reset.
857
     *
858
     * Without this filter we'd be re-requesting txs from each of our peers,
859
     * increasing bandwidth consumption considerably. For instance, with 100
860
     * peers, half of which relay a tx we don't accept, that might be a 50x
861
     * bandwidth increase. A flooding attacker attempting to roll-over the
862
     * filter using minimum-sized, 60byte, transactions might manage to send
863
     * 1000/sec if we have fast peers, so we pick 120,000 to give our peers a
864
     * two minute window to send invs to us.
865
     *
866
     * Decreasing the false positive rate is fairly cheap, so we pick one in a
867
     * million to make it highly unlikely for users to have issues with this
868
     * filter.
869
     *
870
     * We typically only add wtxids to this filter. For non-segwit
871
     * transactions, the txid == wtxid, so this only prevents us from
872
     * re-downloading non-segwit transactions when communicating with
873
     * non-wtxidrelay peers -- which is important for avoiding malleation
874
     * attacks that could otherwise interfere with transaction relay from
875
     * non-wtxidrelay peers. For communicating with wtxidrelay peers, having
876
     * the reject filter store wtxids is exactly what we want to avoid
877
     * redownload of a rejected transaction.
878
     *
879
     * In cases where we can tell that a segwit transaction will fail
880
     * validation no matter the witness, we may add the txid of such
881
     * transaction to the filter as well. This can be helpful when
882
     * communicating with txid-relay peers or if we were to otherwise fetch a
883
     * transaction via txid (eg in our orphan handling).
884
     *
885
     * Memory used: 1.3 MB
886
     */
887
    std::unique_ptr<CRollingBloomFilter> m_recent_rejects GUARDED_BY(::cs_main){nullptr};
888
    /** Block hash of chain tip the last time we reset m_recent_rejects and
889
     * RecentRejectsReconsiderableFilter(). */
890
    uint256 hashRecentRejectsChainTip GUARDED_BY(cs_main);
891
892
    CRollingBloomFilter& RecentRejectsFilter() EXCLUSIVE_LOCKS_REQUIRED(::cs_main)
893
0
    {
894
0
        AssertLockHeld(::cs_main);
895
896
0
        if (!m_recent_rejects) {
  Branch (896:13): [True: 0, False: 0]
897
0
            m_recent_rejects = std::make_unique<CRollingBloomFilter>(120'000, 0.000'001);
898
0
        }
899
900
0
        return *m_recent_rejects;
901
0
    }
902
903
    /**
904
     * Filter for:
905
     * (1) wtxids of transactions that were recently rejected by the mempool but are
906
     * eligible for reconsideration if submitted with other transactions.
907
     * (2) packages (see GetPackageHash) we have already rejected before and should not retry.
908
     *
909
     * Similar to m_recent_rejects, this filter is used to save bandwidth when e.g. all of our peers
910
     * have larger mempools and thus lower minimum feerates than us.
911
     *
912
     * When a transaction's error is TxValidationResult::TX_RECONSIDERABLE (in a package or by
913
     * itself), add its wtxid to this filter. When a package fails for any reason, add the combined
914
     * hash to this filter.
915
     *
916
     * Upon receiving an announcement for a transaction, if it exists in this filter, do not
917
     * download the txdata. When considering packages, if it exists in this filter, drop it.
918
     *
919
     * Reset this filter when the chain tip changes.
920
     *
921
     * Parameters are picked to be the same as m_recent_rejects, with the same rationale.
922
     */
923
    std::unique_ptr<CRollingBloomFilter> m_recent_rejects_reconsiderable GUARDED_BY(::cs_main){nullptr};
924
925
    CRollingBloomFilter& RecentRejectsReconsiderableFilter() EXCLUSIVE_LOCKS_REQUIRED(::cs_main)
926
0
    {
927
0
        AssertLockHeld(::cs_main);
928
929
0
        if (!m_recent_rejects_reconsiderable) {
  Branch (929:13): [True: 0, False: 0]
930
0
            m_recent_rejects_reconsiderable = std::make_unique<CRollingBloomFilter>(120'000, 0.000'001);
931
0
        }
932
933
0
        return *m_recent_rejects_reconsiderable;
934
0
    }
935
936
    /*
937
     * Filter for transactions that have been recently confirmed.
938
     * We use this to avoid requesting transactions that have already been
939
     * confirnmed.
940
     *
941
     * Blocks don't typically have more than 4000 transactions, so this should
942
     * be at least six blocks (~1 hr) worth of transactions that we can store,
943
     * inserting both a txid and wtxid for every observed transaction.
944
     * If the number of transactions appearing in a block goes up, or if we are
945
     * seeing getdata requests more than an hour after initial announcement, we
946
     * can increase this number.
947
     * The false positive rate of 1/1M should come out to less than 1
948
     * transaction per day that would be inadvertently ignored (which is the
949
     * same probability that we have in the reject filter).
950
     */
951
    Mutex m_recent_confirmed_transactions_mutex;
952
    std::unique_ptr<CRollingBloomFilter> m_recent_confirmed_transactions GUARDED_BY(m_recent_confirmed_transactions_mutex){nullptr};
953
954
    CRollingBloomFilter& RecentConfirmedTransactionsFilter() EXCLUSIVE_LOCKS_REQUIRED(m_recent_confirmed_transactions_mutex)
955
0
    {
956
0
        AssertLockHeld(m_recent_confirmed_transactions_mutex);
957
958
0
        if (!m_recent_confirmed_transactions) {
  Branch (958:13): [True: 0, False: 0]
959
0
            m_recent_confirmed_transactions = std::make_unique<CRollingBloomFilter>(48'000, 0.000'001);
960
0
        }
961
962
0
        return *m_recent_confirmed_transactions;
963
0
    }
964
965
    /**
966
     * For sending `inv`s to inbound peers, we use a single (exponentially
967
     * distributed) timer for all peers. If we used a separate timer for each
968
     * peer, a spy node could make multiple inbound connections to us to
969
     * accurately determine when we received the transaction (and potentially
970
     * determine the transaction's origin). */
971
    std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now,
972
                                                std::chrono::seconds average_interval) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
973
974
975
    // All of the following cache a recent block, and are protected by m_most_recent_block_mutex
976
    Mutex m_most_recent_block_mutex;
977
    std::shared_ptr<const CBlock> m_most_recent_block GUARDED_BY(m_most_recent_block_mutex);
978
    std::shared_ptr<const CBlockHeaderAndShortTxIDs> m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex);
979
    uint256 m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex);
980
    std::unique_ptr<const std::map<uint256, CTransactionRef>> m_most_recent_block_txs GUARDED_BY(m_most_recent_block_mutex);
981
982
    // Data about the low-work headers synchronization, aggregated from all peers' HeadersSyncStates.
983
    /** Mutex guarding the other m_headers_presync_* variables. */
984
    Mutex m_headers_presync_mutex;
985
    /** A type to represent statistics about a peer's low-work headers sync.
986
     *
987
     * - The first field is the total verified amount of work in that synchronization.
988
     * - The second is:
989
     *   - nullopt: the sync is in REDOWNLOAD phase (phase 2).
990
     *   - {height, timestamp}: the sync has the specified tip height and block timestamp (phase 1).
991
     */
992
    using HeadersPresyncStats = std::pair<arith_uint256, std::optional<std::pair<int64_t, uint32_t>>>;
993
    /** Statistics for all peers in low-work headers sync. */
994
    std::map<NodeId, HeadersPresyncStats> m_headers_presync_stats GUARDED_BY(m_headers_presync_mutex) {};
995
    /** The peer with the most-work entry in m_headers_presync_stats. */
996
    NodeId m_headers_presync_bestpeer GUARDED_BY(m_headers_presync_mutex) {-1};
997
    /** The m_headers_presync_stats improved, and needs signalling. */
998
    std::atomic_bool m_headers_presync_should_signal{false};
999
1000
    /** Height of the highest block announced using BIP 152 high-bandwidth mode. */
1001
    int m_highest_fast_announce GUARDED_BY(::cs_main){0};
1002
1003
    /** Have we requested this block from a peer */
1004
    bool IsBlockRequested(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1005
1006
    /** Have we requested this block from an outbound peer */
1007
    bool IsBlockRequestedFromOutbound(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1008
1009
    /** Remove this block from our tracked requested blocks. Called if:
1010
     *  - the block has been received from a peer
1011
     *  - the request for the block has timed out
1012
     * If "from_peer" is specified, then only remove the block if it is in
1013
     * flight from that peer (to avoid one peer's network traffic from
1014
     * affecting another's state).
1015
     */
1016
    void RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1017
1018
    /* Mark a block as in flight
1019
     * Returns false, still setting pit, if the block was already in flight from the same peer
1020
     * pit will only be valid as long as the same cs_main lock is being held
1021
     */
1022
    bool BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1023
1024
    bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1025
1026
    /** Update pindexLastCommonBlock and add not-in-flight missing successors to vBlocks, until it has
1027
     *  at most count entries.
1028
     */
1029
    void FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1030
1031
    /** Request blocks for the background chainstate, if one is in use. */
1032
    void TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex* from_tip, const CBlockIndex* target_block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1033
1034
    /**
1035
    * \brief Find next blocks to download from a peer after a starting block.
1036
    *
1037
    * \param vBlocks      Vector of blocks to download which will be appended to.
1038
    * \param peer         Peer which blocks will be downloaded from.
1039
    * \param state        Pointer to the state of the peer.
1040
    * \param pindexWalk   Pointer to the starting block to add to vBlocks.
1041
    * \param count        Maximum number of blocks to allow in vBlocks. No more
1042
    *                     blocks will be added if it reaches this size.
1043
    * \param nWindowEnd   Maximum height of blocks to allow in vBlocks. No
1044
    *                     blocks will be added above this height.
1045
    * \param activeChain  Optional pointer to a chain to compare against. If
1046
    *                     provided, any next blocks which are already contained
1047
    *                     in this chain will not be appended to vBlocks, but
1048
    *                     instead will be used to update the
1049
    *                     state->pindexLastCommonBlock pointer.
1050
    * \param nodeStaller  Optional pointer to a NodeId variable that will receive
1051
    *                     the ID of another peer that might be causing this peer
1052
    *                     to stall. This is set to the ID of the peer which
1053
    *                     first requested the first in-flight block in the
1054
    *                     download window. It is only set if vBlocks is empty at
1055
    *                     the end of this function call and if increasing
1056
    *                     nWindowEnd by 1 would cause it to be non-empty (which
1057
    *                     indicates the download might be stalled because every
1058
    *                     block in the window is in flight and no other peer is
1059
    *                     trying to download the next block).
1060
    */
1061
    void FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain=nullptr, NodeId* nodeStaller=nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1062
1063
    /* Multimap used to preserve insertion order */
1064
    typedef std::multimap<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator>> BlockDownloadMap;
1065
    BlockDownloadMap mapBlocksInFlight GUARDED_BY(cs_main);
1066
1067
    /** When our tip was last updated. */
1068
    std::atomic<std::chrono::seconds> m_last_tip_update{0s};
1069
1070
    /** Determine whether or not a peer can request a transaction, and return it (or nullptr if not found or not allowed). */
1071
    CTransactionRef FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
1072
        EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, NetEventsInterface::g_msgproc_mutex);
1073
1074
    void ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
1075
        EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, peer.m_getdata_requests_mutex, NetEventsInterface::g_msgproc_mutex)
1076
        LOCKS_EXCLUDED(::cs_main);
1077
1078
    /** Process a new block. Perform any post-processing housekeeping */
1079
    void ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked);
1080
1081
    /** Process compact block txns  */
1082
    void ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
1083
        EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
1084
1085
    /**
1086
     * When a peer sends us a valid block, instruct it to announce blocks to us
1087
     * using CMPCTBLOCK if possible by adding its nodeid to the end of
1088
     * lNodesAnnouncingHeaderAndIDs, and keeping that list under a certain size by
1089
     * removing the first element if necessary.
1090
     */
1091
    void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1092
1093
    /** Stack of nodes which we have set to announce using compact blocks */
1094
    std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
1095
1096
    /** Number of peers from which we're downloading blocks. */
1097
    int m_peers_downloading_from GUARDED_BY(cs_main) = 0;
1098
1099
    /** Storage for orphan information */
1100
    TxOrphanage m_orphanage;
1101
1102
    void AddToCompactExtraTransactions(const CTransactionRef& tx) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1103
1104
    /** Orphan/conflicted/etc transactions that are kept for compact block reconstruction.
1105
     *  The last -blockreconstructionextratxn/DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN of
1106
     *  these are kept in a ring buffer */
1107
    std::vector<CTransactionRef> vExtraTxnForCompact GUARDED_BY(g_msgproc_mutex);
1108
    /** Offset into vExtraTxnForCompact to insert the next tx */
1109
    size_t vExtraTxnForCompactIt GUARDED_BY(g_msgproc_mutex) = 0;
1110
1111
    /** Check whether the last unknown block a peer advertised is not yet known. */
1112
    void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1113
    /** Update tracking information about which blocks a peer is assumed to have. */
1114
    void UpdateBlockAvailability(NodeId nodeid, const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1115
    bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1116
1117
    /**
1118
     * Estimates the distance, in blocks, between the best-known block and the network chain tip.
1119
     * Utilizes the best-block time and the chainparams blocks spacing to approximate it.
1120
     */
1121
    int64_t ApproximateBestBlockDepth() const;
1122
1123
    /**
1124
     * To prevent fingerprinting attacks, only send blocks/headers outside of
1125
     * the active chain if they are no more than a month older (both in time,
1126
     * and in best equivalent proof of work) than the best header chain we know
1127
     * about and we fully-validated them at some point.
1128
     */
1129
    bool BlockRequestAllowed(const CBlockIndex* pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1130
    bool AlreadyHaveBlock(const uint256& block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1131
    void ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
1132
        EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
1133
1134
    /**
1135
     * Validation logic for compact filters request handling.
1136
     *
1137
     * May disconnect from the peer in the case of a bad request.
1138
     *
1139
     * @param[in]   node            The node that we received the request from
1140
     * @param[in]   peer            The peer that we received the request from
1141
     * @param[in]   filter_type     The filter type the request is for. Must be basic filters.
1142
     * @param[in]   start_height    The start height for the request
1143
     * @param[in]   stop_hash       The stop_hash for the request
1144
     * @param[in]   max_height_diff The maximum number of items permitted to request, as specified in BIP 157
1145
     * @param[out]  stop_index      The CBlockIndex for the stop_hash block, if the request can be serviced.
1146
     * @param[out]  filter_index    The filter index, if the request can be serviced.
1147
     * @return                      True if the request can be serviced.
1148
     */
1149
    bool PrepareBlockFilterRequest(CNode& node, Peer& peer,
1150
                                   BlockFilterType filter_type, uint32_t start_height,
1151
                                   const uint256& stop_hash, uint32_t max_height_diff,
1152
                                   const CBlockIndex*& stop_index,
1153
                                   BlockFilterIndex*& filter_index);
1154
1155
    /**
1156
     * Handle a cfilters request.
1157
     *
1158
     * May disconnect from the peer in the case of a bad request.
1159
     *
1160
     * @param[in]   node            The node that we received the request from
1161
     * @param[in]   peer            The peer that we received the request from
1162
     * @param[in]   vRecv           The raw message received
1163
     */
1164
    void ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv);
1165
1166
    /**
1167
     * Handle a cfheaders request.
1168
     *
1169
     * May disconnect from the peer in the case of a bad request.
1170
     *
1171
     * @param[in]   node            The node that we received the request from
1172
     * @param[in]   peer            The peer that we received the request from
1173
     * @param[in]   vRecv           The raw message received
1174
     */
1175
    void ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv);
1176
1177
    /**
1178
     * Handle a getcfcheckpt request.
1179
     *
1180
     * May disconnect from the peer in the case of a bad request.
1181
     *
1182
     * @param[in]   node            The node that we received the request from
1183
     * @param[in]   peer            The peer that we received the request from
1184
     * @param[in]   vRecv           The raw message received
1185
     */
1186
    void ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv);
1187
1188
    /** Checks if address relay is permitted with peer. If needed, initializes
1189
     * the m_addr_known bloom filter and sets m_addr_relay_enabled to true.
1190
     *
1191
     *  @return   True if address relay is enabled with peer
1192
     *            False if address relay is disallowed
1193
     */
1194
    bool SetupAddressRelay(const CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1195
1196
    void AddAddressKnown(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1197
    void PushAddress(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1198
};
1199
1200
const CNodeState* PeerManagerImpl::State(NodeId pnode) const
1201
2.27k
{
1202
2.27k
    std::map<NodeId, CNodeState>::const_iterator it = m_node_states.find(pnode);
1203
2.27k
    if (it == m_node_states.end())
  Branch (1203:9): [True: 0, False: 2.27k]
1204
0
        return nullptr;
1205
2.27k
    return &it->second;
1206
2.27k
}
1207
1208
CNodeState* PeerManagerImpl::State(NodeId pnode)
1209
2.27k
{
1210
2.27k
    return const_cast<CNodeState*>(std::as_const(*this).State(pnode));
1211
2.27k
}
1212
1213
/**
1214
 * Whether the peer supports the address. For example, a peer that does not
1215
 * implement BIP155 cannot receive Tor v3 addresses because it requires
1216
 * ADDRv2 (BIP155) encoding.
1217
 */
1218
static bool IsAddrCompatible(const Peer& peer, const CAddress& addr)
1219
0
{
1220
0
    return peer.m_wants_addrv2 || addr.IsAddrV1Compatible();
  Branch (1220:12): [True: 0, False: 0]
  Branch (1220:35): [True: 0, False: 0]
1221
0
}
1222
1223
void PeerManagerImpl::AddAddressKnown(Peer& peer, const CAddress& addr)
1224
0
{
1225
0
    assert(peer.m_addr_known);
1226
0
    peer.m_addr_known->insert(addr.GetKey());
1227
0
}
1228
1229
void PeerManagerImpl::PushAddress(Peer& peer, const CAddress& addr)
1230
0
{
1231
    // Known checking here is only to save space from duplicates.
1232
    // Before sending, we'll filter it again for known addresses that were
1233
    // added after addresses were pushed.
1234
0
    assert(peer.m_addr_known);
1235
0
    if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) {
  Branch (1235:9): [True: 0, False: 0]
  Branch (1235:9): [True: 0, False: 0]
  Branch (1235:27): [True: 0, False: 0]
  Branch (1235:74): [True: 0, False: 0]
1236
0
        if (peer.m_addrs_to_send.size() >= MAX_ADDR_TO_SEND) {
  Branch (1236:13): [True: 0, False: 0]
1237
0
            peer.m_addrs_to_send[m_rng.randrange(peer.m_addrs_to_send.size())] = addr;
1238
0
        } else {
1239
0
            peer.m_addrs_to_send.push_back(addr);
1240
0
        }
1241
0
    }
1242
0
}
1243
1244
static void AddKnownTx(Peer& peer, const uint256& hash)
1245
0
{
1246
0
    auto tx_relay = peer.GetTxRelay();
1247
0
    if (!tx_relay) return;
  Branch (1247:9): [True: 0, False: 0]
1248
1249
0
    LOCK(tx_relay->m_tx_inventory_mutex);
1250
0
    tx_relay->m_tx_inventory_known_filter.insert(hash);
1251
0
}
1252
1253
/** Whether this peer can serve us blocks. */
1254
static bool CanServeBlocks(const Peer& peer)
1255
600
{
1256
600
    return peer.m_their_services & (NODE_NETWORK|NODE_NETWORK_LIMITED);
1257
600
}
1258
1259
/** Whether this peer can only serve limited recent blocks (e.g. because
1260
 *  it prunes old blocks) */
1261
static bool IsLimitedPeer(const Peer& peer)
1262
125
{
1263
125
    return (!(peer.m_their_services & NODE_NETWORK) &&
  Branch (1263:13): [True: 19, False: 106]
1264
125
             (peer.m_their_services & NODE_NETWORK_LIMITED));
  Branch (1264:14): [True: 19, False: 0]
1265
125
}
1266
1267
/** Whether this peer can serve us witness data */
1268
static bool CanServeWitnesses(const Peer& peer)
1269
0
{
1270
0
    return peer.m_their_services & NODE_WITNESS;
1271
0
}
1272
1273
std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now,
1274
                                                             std::chrono::seconds average_interval)
1275
29
{
1276
29
    if (m_next_inv_to_inbounds.load() < now) {
  Branch (1276:9): [True: 26, False: 3]
1277
        // If this function were called from multiple threads simultaneously
1278
        // it would possible that both update the next send variable, and return a different result to their caller.
1279
        // This is not possible in practice as only the net processing thread invokes this function.
1280
26
        m_next_inv_to_inbounds = now + m_rng.rand_exp_duration(average_interval);
1281
26
    }
1282
29
    return m_next_inv_to_inbounds;
1283
29
}
1284
1285
bool PeerManagerImpl::IsBlockRequested(const uint256& hash)
1286
0
{
1287
0
    return mapBlocksInFlight.count(hash);
1288
0
}
1289
1290
bool PeerManagerImpl::IsBlockRequestedFromOutbound(const uint256& hash)
1291
0
{
1292
0
    for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
  Branch (1292:60): [True: 0, False: 0]
1293
0
        auto [nodeid, block_it] = range.first->second;
1294
0
        CNodeState& nodestate = *Assert(State(nodeid));
1295
0
        if (!nodestate.m_is_inbound) return true;
  Branch (1295:13): [True: 0, False: 0]
1296
0
    }
1297
1298
0
    return false;
1299
0
}
1300
1301
void PeerManagerImpl::RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer)
1302
0
{
1303
0
    auto range = mapBlocksInFlight.equal_range(hash);
1304
0
    if (range.first == range.second) {
  Branch (1304:9): [True: 0, False: 0]
1305
        // Block was not requested from any peer
1306
0
        return;
1307
0
    }
1308
1309
    // We should not have requested too many of this block
1310
0
    Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1311
1312
0
    while (range.first != range.second) {
  Branch (1312:12): [True: 0, False: 0]
1313
0
        auto [node_id, list_it] = range.first->second;
1314
1315
0
        if (from_peer && *from_peer != node_id) {
  Branch (1315:13): [True: 0, False: 0]
  Branch (1315:26): [True: 0, False: 0]
1316
0
            range.first++;
1317
0
            continue;
1318
0
        }
1319
1320
0
        CNodeState& state = *Assert(State(node_id));
1321
1322
0
        if (state.vBlocksInFlight.begin() == list_it) {
  Branch (1322:13): [True: 0, False: 0]
1323
            // First block on the queue was received, update the start download time for the next one
1324
0
            state.m_downloading_since = std::max(state.m_downloading_since, GetTime<std::chrono::microseconds>());
1325
0
        }
1326
0
        state.vBlocksInFlight.erase(list_it);
1327
1328
0
        if (state.vBlocksInFlight.empty()) {
  Branch (1328:13): [True: 0, False: 0]
1329
            // Last validated block on the queue for this peer was received.
1330
0
            m_peers_downloading_from--;
1331
0
        }
1332
0
        state.m_stalling_since = 0us;
1333
1334
0
        range.first = mapBlocksInFlight.erase(range.first);
1335
0
    }
1336
0
}
1337
1338
bool PeerManagerImpl::BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit)
1339
0
{
1340
0
    const uint256& hash{block.GetBlockHash()};
1341
1342
0
    CNodeState *state = State(nodeid);
1343
0
    assert(state != nullptr);
1344
1345
0
    Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1346
1347
    // Short-circuit most stuff in case it is from the same node
1348
0
    for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
  Branch (1348:60): [True: 0, False: 0]
1349
0
        if (range.first->second.first == nodeid) {
  Branch (1349:13): [True: 0, False: 0]
1350
0
            if (pit) {
  Branch (1350:17): [True: 0, False: 0]
1351
0
                *pit = &range.first->second.second;
1352
0
            }
1353
0
            return false;
1354
0
        }
1355
0
    }
1356
1357
    // Make sure it's not being fetched already from same peer.
1358
0
    RemoveBlockRequest(hash, nodeid);
1359
1360
0
    std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(),
1361
0
            {&block, std::unique_ptr<PartiallyDownloadedBlock>(pit ? new PartiallyDownloadedBlock(&m_mempool) : nullptr)});
  Branch (1361:64): [True: 0, False: 0]
1362
0
    if (state->vBlocksInFlight.size() == 1) {
  Branch (1362:9): [True: 0, False: 0]
1363
        // We're starting a block download (batch) from this peer.
1364
0
        state->m_downloading_since = GetTime<std::chrono::microseconds>();
1365
0
        m_peers_downloading_from++;
1366
0
    }
1367
0
    auto itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it)));
1368
0
    if (pit) {
  Branch (1368:9): [True: 0, False: 0]
1369
0
        *pit = &itInFlight->second.second;
1370
0
    }
1371
0
    return true;
1372
0
}
1373
1374
void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid)
1375
0
{
1376
0
    AssertLockHeld(cs_main);
1377
1378
    // When in -blocksonly mode, never request high-bandwidth mode from peers. Our
1379
    // mempool will not contain the transactions necessary to reconstruct the
1380
    // compact block.
1381
0
    if (m_opts.ignore_incoming_txs) return;
  Branch (1381:9): [True: 0, False: 0]
1382
1383
0
    CNodeState* nodestate = State(nodeid);
1384
0
    if (!nodestate || !nodestate->m_provides_cmpctblocks) {
  Branch (1384:9): [True: 0, False: 0]
  Branch (1384:23): [True: 0, False: 0]
1385
        // Don't request compact blocks if the peer has not signalled support
1386
0
        return;
1387
0
    }
1388
1389
0
    int num_outbound_hb_peers = 0;
1390
0
    for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
  Branch (1390:81): [True: 0, False: 0]
1391
0
        if (*it == nodeid) {
  Branch (1391:13): [True: 0, False: 0]
1392
0
            lNodesAnnouncingHeaderAndIDs.erase(it);
1393
0
            lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
1394
0
            return;
1395
0
        }
1396
0
        CNodeState *state = State(*it);
1397
0
        if (state != nullptr && !state->m_is_inbound) ++num_outbound_hb_peers;
  Branch (1397:13): [True: 0, False: 0]
  Branch (1397:33): [True: 0, False: 0]
1398
0
    }
1399
0
    if (nodestate->m_is_inbound) {
  Branch (1399:9): [True: 0, False: 0]
1400
        // If we're adding an inbound HB peer, make sure we're not removing
1401
        // our last outbound HB peer in the process.
1402
0
        if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) {
  Branch (1402:13): [True: 0, False: 0]
  Branch (1402:57): [True: 0, False: 0]
1403
0
            CNodeState *remove_node = State(lNodesAnnouncingHeaderAndIDs.front());
1404
0
            if (remove_node != nullptr && !remove_node->m_is_inbound) {
  Branch (1404:17): [True: 0, False: 0]
  Branch (1404:43): [True: 0, False: 0]
1405
                // Put the HB outbound peer in the second slot, so that it
1406
                // doesn't get removed.
1407
0
                std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin()));
1408
0
            }
1409
0
        }
1410
0
    }
1411
0
    m_connman.ForNode(nodeid, [this](CNode* pfrom) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
1412
0
        AssertLockHeld(::cs_main);
1413
0
        if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
  Branch (1413:13): [True: 0, False: 0]
1414
            // As per BIP152, we only get 3 of our peers to announce
1415
            // blocks using compact encodings.
1416
0
            m_connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [this](CNode* pnodeStop){
1417
0
                MakeAndPushMessage(*pnodeStop, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
1418
                // save BIP152 bandwidth state: we select peer to be low-bandwidth
1419
0
                pnodeStop->m_bip152_highbandwidth_to = false;
1420
0
                return true;
1421
0
            });
1422
0
            lNodesAnnouncingHeaderAndIDs.pop_front();
1423
0
        }
1424
0
        MakeAndPushMessage(*pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION);
1425
        // save BIP152 bandwidth state: we select peer to be high-bandwidth
1426
0
        pfrom->m_bip152_highbandwidth_to = true;
1427
0
        lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
1428
0
        return true;
1429
0
    });
1430
0
}
1431
1432
bool PeerManagerImpl::TipMayBeStale()
1433
0
{
1434
0
    AssertLockHeld(cs_main);
1435
0
    const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
1436
0
    if (m_last_tip_update.load() == 0s) {
  Branch (1436:9): [True: 0, False: 0]
1437
0
        m_last_tip_update = GetTime<std::chrono::seconds>();
1438
0
    }
1439
0
    return m_last_tip_update.load() < GetTime<std::chrono::seconds>() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty();
  Branch (1439:12): [True: 0, False: 0]
  Branch (1439:136): [True: 0, False: 0]
1440
0
}
1441
1442
int64_t PeerManagerImpl::ApproximateBestBlockDepth() const
1443
346
{
1444
346
    return (GetTime<std::chrono::seconds>() - m_best_block_time.load()).count() / m_chainparams.GetConsensus().nPowTargetSpacing;
1445
346
}
1446
1447
bool PeerManagerImpl::CanDirectFetch()
1448
0
{
1449
0
    return m_chainman.ActiveChain().Tip()->Time() > NodeClock::now() - m_chainparams.GetConsensus().PowTargetSpacing() * 20;
1450
0
}
1451
1452
static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1453
0
{
1454
0
    if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
  Branch (1454:9): [True: 0, False: 0]
  Branch (1454:40): [True: 0, False: 0]
1455
0
        return true;
1456
0
    if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
  Branch (1456:9): [True: 0, False: 0]
  Branch (1456:40): [True: 0, False: 0]
1457
0
        return true;
1458
0
    return false;
1459
0
}
1460
1461
247
void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) {
1462
247
    CNodeState *state = State(nodeid);
1463
247
    assert(state != nullptr);
1464
1465
247
    if (!state->hashLastUnknownBlock.IsNull()) {
  Branch (1465:9): [True: 0, False: 247]
1466
0
        const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock);
1467
0
        if (pindex && pindex->nChainWork > 0) {
  Branch (1467:13): [True: 0, False: 0]
  Branch (1467:13): [True: 0, False: 0]
  Branch (1467:23): [True: 0, False: 0]
1468
0
            if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
  Branch (1468:17): [True: 0, False: 0]
  Branch (1468:59): [True: 0, False: 0]
1469
0
                state->pindexBestKnownBlock = pindex;
1470
0
            }
1471
0
            state->hashLastUnknownBlock.SetNull();
1472
0
        }
1473
0
    }
1474
247
}
1475
1476
0
void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
1477
0
    CNodeState *state = State(nodeid);
1478
0
    assert(state != nullptr);
1479
1480
0
    ProcessBlockAvailability(nodeid);
1481
1482
0
    const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
1483
0
    if (pindex && pindex->nChainWork > 0) {
  Branch (1483:9): [True: 0, False: 0]
  Branch (1483:9): [True: 0, False: 0]
  Branch (1483:19): [True: 0, False: 0]
1484
        // An actually better block was announced.
1485
0
        if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
  Branch (1485:13): [True: 0, False: 0]
  Branch (1485:55): [True: 0, False: 0]
1486
0
            state->pindexBestKnownBlock = pindex;
1487
0
        }
1488
0
    } else {
1489
        // An unknown block was announced; just assume that the latest one is the best one.
1490
0
        state->hashLastUnknownBlock = hash;
1491
0
    }
1492
0
}
1493
1494
// Logic for calculating which blocks to download from a given peer, given our current tip.
1495
void PeerManagerImpl::FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller)
1496
106
{
1497
106
    if (count == 0)
  Branch (1497:9): [True: 0, False: 106]
1498
0
        return;
1499
1500
106
    vBlocks.reserve(vBlocks.size() + count);
1501
106
    CNodeState *state = State(peer.m_id);
1502
106
    assert(state != nullptr);
1503
1504
    // Make sure pindexBestKnownBlock is up to date, we'll need it.
1505
106
    ProcessBlockAvailability(peer.m_id);
1506
1507
106
    if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
  Branch (1507:9): [True: 106, False: 0]
  Branch (1507:51): [True: 0, False: 0]
  Branch (1507:139): [True: 0, False: 0]
1508
        // This peer has nothing interesting.
1509
106
        return;
1510
106
    }
1511
1512
0
    if (state->pindexLastCommonBlock == nullptr) {
  Branch (1512:9): [True: 0, False: 0]
1513
        // Bootstrap quickly by guessing a parent of our best tip is the forking point.
1514
        // Guessing wrong in either direction is not a problem.
1515
0
        state->pindexLastCommonBlock = m_chainman.ActiveChain()[std::min(state->pindexBestKnownBlock->nHeight, m_chainman.ActiveChain().Height())];
1516
0
    }
1517
1518
    // If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor
1519
    // of its current tip anymore. Go back enough to fix that.
1520
0
    state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock);
1521
0
    if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
  Branch (1521:9): [True: 0, False: 0]
1522
0
        return;
1523
1524
0
    const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
1525
    // Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
1526
    // linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
1527
    // download that next block if the window were 1 larger.
1528
0
    int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
1529
1530
0
    FindNextBlocks(vBlocks, peer, state, pindexWalk, count, nWindowEnd, &m_chainman.ActiveChain(), &nodeStaller);
1531
0
}
1532
1533
void PeerManagerImpl::TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex *from_tip, const CBlockIndex* target_block)
1534
0
{
1535
0
    Assert(from_tip);
1536
0
    Assert(target_block);
1537
1538
0
    if (vBlocks.size() >= count) {
  Branch (1538:9): [True: 0, False: 0]
1539
0
        return;
1540
0
    }
1541
1542
0
    vBlocks.reserve(count);
1543
0
    CNodeState *state = Assert(State(peer.m_id));
1544
1545
0
    if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->GetAncestor(target_block->nHeight) != target_block) {
  Branch (1545:9): [True: 0, False: 0]
  Branch (1545:51): [True: 0, False: 0]
1546
        // This peer can't provide us the complete series of blocks leading up to the
1547
        // assumeutxo snapshot base.
1548
        //
1549
        // Presumably this peer's chain has less work than our ActiveChain()'s tip, or else we
1550
        // will eventually crash when we try to reorg to it. Let other logic
1551
        // deal with whether we disconnect this peer.
1552
        //
1553
        // TODO at some point in the future, we might choose to request what blocks
1554
        // this peer does have from the historical chain, despite it not having a
1555
        // complete history beneath the snapshot base.
1556
0
        return;
1557
0
    }
1558
1559
0
    FindNextBlocks(vBlocks, peer, state, from_tip, count, std::min<int>(from_tip->nHeight + BLOCK_DOWNLOAD_WINDOW, target_block->nHeight));
1560
0
}
1561
1562
void PeerManagerImpl::FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain, NodeId* nodeStaller)
1563
0
{
1564
0
    std::vector<const CBlockIndex*> vToFetch;
1565
0
    int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
1566
0
    bool is_limited_peer = IsLimitedPeer(peer);
1567
0
    NodeId waitingfor = -1;
1568
0
    while (pindexWalk->nHeight < nMaxHeight) {
  Branch (1568:12): [True: 0, False: 0]
1569
        // Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
1570
        // pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
1571
        // as iterating over ~100 CBlockIndex* entries anyway.
1572
0
        int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
1573
0
        vToFetch.resize(nToFetch);
1574
0
        pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
1575
0
        vToFetch[nToFetch - 1] = pindexWalk;
1576
0
        for (unsigned int i = nToFetch - 1; i > 0; i--) {
  Branch (1576:45): [True: 0, False: 0]
1577
0
            vToFetch[i - 1] = vToFetch[i]->pprev;
1578
0
        }
1579
1580
        // Iterate over those blocks in vToFetch (in forward direction), adding the ones that
1581
        // are not yet downloaded and not in flight to vBlocks. In the meantime, update
1582
        // pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
1583
        // already part of our chain (and therefore don't need it even if pruned).
1584
0
        for (const CBlockIndex* pindex : vToFetch) {
  Branch (1584:40): [True: 0, False: 0]
1585
0
            if (!pindex->IsValid(BLOCK_VALID_TREE)) {
  Branch (1585:17): [True: 0, False: 0]
1586
                // We consider the chain that this peer is on invalid.
1587
0
                return;
1588
0
            }
1589
1590
0
            if (!CanServeWitnesses(peer) && DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) {
  Branch (1590:17): [True: 0, False: 0]
  Branch (1590:45): [True: 0, False: 0]
1591
                // We wouldn't download this block or its descendants from this peer.
1592
0
                return;
1593
0
            }
1594
1595
0
            if (pindex->nStatus & BLOCK_HAVE_DATA || (activeChain && activeChain->Contains(pindex))) {
  Branch (1595:17): [True: 0, False: 0]
  Branch (1595:55): [True: 0, False: 0]
  Branch (1595:70): [True: 0, False: 0]
1596
0
                if (activeChain && pindex->HaveNumChainTxs()) {
  Branch (1596:21): [True: 0, False: 0]
  Branch (1596:36): [True: 0, False: 0]
1597
0
                    state->pindexLastCommonBlock = pindex;
1598
0
                }
1599
0
                continue;
1600
0
            }
1601
1602
            // Is block in-flight?
1603
0
            if (IsBlockRequested(pindex->GetBlockHash())) {
  Branch (1603:17): [True: 0, False: 0]
1604
0
                if (waitingfor == -1) {
  Branch (1604:21): [True: 0, False: 0]
1605
                    // This is the first already-in-flight block.
1606
0
                    waitingfor = mapBlocksInFlight.lower_bound(pindex->GetBlockHash())->second.first;
1607
0
                }
1608
0
                continue;
1609
0
            }
1610
1611
            // The block is not already downloaded, and not yet in flight.
1612
0
            if (pindex->nHeight > nWindowEnd) {
  Branch (1612:17): [True: 0, False: 0]
1613
                // We reached the end of the window.
1614
0
                if (vBlocks.size() == 0 && waitingfor != peer.m_id) {
  Branch (1614:21): [True: 0, False: 0]
  Branch (1614:44): [True: 0, False: 0]
1615
                    // We aren't able to fetch anything, but we would be if the download window was one larger.
1616
0
                    if (nodeStaller) *nodeStaller = waitingfor;
  Branch (1616:25): [True: 0, False: 0]
1617
0
                }
1618
0
                return;
1619
0
            }
1620
1621
            // Don't request blocks that go further than what limited peers can provide
1622
0
            if (is_limited_peer && (state->pindexBestKnownBlock->nHeight - pindex->nHeight >= static_cast<int>(NODE_NETWORK_LIMITED_MIN_BLOCKS) - 2 /* two blocks buffer for possible races */)) {
  Branch (1622:17): [True: 0, False: 0]
  Branch (1622:36): [True: 0, False: 0]
1623
0
                continue;
1624
0
            }
1625
1626
0
            vBlocks.push_back(pindex);
1627
0
            if (vBlocks.size() == count) {
  Branch (1627:17): [True: 0, False: 0]
1628
0
                return;
1629
0
            }
1630
0
        }
1631
0
    }
1632
0
}
1633
1634
} // namespace
1635
1636
void PeerManagerImpl::PushNodeVersion(CNode& pnode, const Peer& peer)
1637
781
{
1638
781
    uint64_t my_services{peer.m_our_services};
1639
781
    const int64_t nTime{count_seconds(GetTime<std::chrono::seconds>())};
1640
781
    uint64_t nonce = pnode.GetLocalNonce();
1641
781
    const int nNodeStartingHeight{m_best_height};
1642
781
    NodeId nodeid = pnode.GetId();
1643
781
    CAddress addr = pnode.addr;
1644
1645
781
    CService addr_you = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? addr : CService();
  Branch (1645:25): [True: 583, False: 198]
  Branch (1645:46): [True: 583, False: 0]
  Branch (1645:64): [True: 455, False: 128]
1646
781
    uint64_t your_services{addr.nServices};
1647
1648
781
    const bool tx_relay{!RejectIncomingTxs(pnode)};
1649
781
    MakeAndPushMessage(pnode, NetMsgType::VERSION, PROTOCOL_VERSION, my_services, nTime,
1650
781
            your_services, CNetAddr::V1(addr_you), // Together the pre-version-31402 serialization of CAddress "addrYou" (without nTime)
1651
781
            my_services, CNetAddr::V1(CService{}), // Together the pre-version-31402 serialization of CAddress "addrMe" (without nTime)
1652
781
            nonce, strSubVersion, nNodeStartingHeight, tx_relay);
1653
1654
781
    if (fLogIPs) {
  Branch (1654:9): [True: 0, False: 781]
1655
0
        LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, them=%s, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addr_you.ToStringAddrPort(), tx_relay, nodeid);
1656
781
    } else {
1657
781
        LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, tx_relay, nodeid);
1658
781
    }
1659
781
}
1660
1661
void PeerManagerImpl::AddTxAnnouncement(const CNode& node, const GenTxid& gtxid, std::chrono::microseconds current_time)
1662
0
{
1663
0
    AssertLockHeld(::cs_main); // For m_txrequest
1664
0
    NodeId nodeid = node.GetId();
1665
0
    if (!node.HasPermission(NetPermissionFlags::Relay) && m_txrequest.Count(nodeid) >= MAX_PEER_TX_ANNOUNCEMENTS) {
  Branch (1665:9): [True: 0, False: 0]
  Branch (1665:59): [True: 0, False: 0]
1666
        // Too many queued announcements from this peer
1667
0
        return;
1668
0
    }
1669
0
    const CNodeState* state = State(nodeid);
1670
1671
    // Decide the TxRequestTracker parameters for this announcement:
1672
    // - "preferred": if fPreferredDownload is set (= outbound, or NetPermissionFlags::NoBan permission)
1673
    // - "reqtime": current time plus delays for:
1674
    //   - NONPREF_PEER_TX_DELAY for announcements from non-preferred connections
1675
    //   - TXID_RELAY_DELAY for txid announcements while wtxid peers are available
1676
    //   - OVERLOADED_PEER_TX_DELAY for announcements from peers which have at least
1677
    //     MAX_PEER_TX_REQUEST_IN_FLIGHT requests in flight (and don't have NetPermissionFlags::Relay).
1678
0
    auto delay{0us};
1679
0
    const bool preferred = state->fPreferredDownload;
1680
0
    if (!preferred) delay += NONPREF_PEER_TX_DELAY;
  Branch (1680:9): [True: 0, False: 0]
1681
0
    if (!gtxid.IsWtxid() && m_wtxid_relay_peers > 0) delay += TXID_RELAY_DELAY;
  Branch (1681:9): [True: 0, False: 0]
  Branch (1681:29): [True: 0, False: 0]
1682
0
    const bool overloaded = !node.HasPermission(NetPermissionFlags::Relay) &&
  Branch (1682:29): [True: 0, False: 0]
1683
0
        m_txrequest.CountInFlight(nodeid) >= MAX_PEER_TX_REQUEST_IN_FLIGHT;
  Branch (1683:9): [True: 0, False: 0]
1684
0
    if (overloaded) delay += OVERLOADED_PEER_TX_DELAY;
  Branch (1684:9): [True: 0, False: 0]
1685
0
    m_txrequest.ReceivedInv(nodeid, gtxid, preferred, current_time + delay);
1686
0
}
1687
1688
void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)
1689
0
{
1690
0
    LOCK(cs_main);
1691
0
    CNodeState *state = State(node);
1692
0
    if (state) state->m_last_block_announcement = time_in_seconds;
  Branch (1692:9): [True: 0, False: 0]
1693
0
}
1694
1695
void PeerManagerImpl::InitializeNode(CNode& node, ServiceFlags our_services)
1696
1.01k
{
1697
1.01k
    NodeId nodeid = node.GetId();
1698
1.01k
    {
1699
1.01k
        LOCK(cs_main);
1700
1.01k
        m_node_states.emplace_hint(m_node_states.end(), std::piecewise_construct, std::forward_as_tuple(nodeid), std::forward_as_tuple(node.IsInboundConn()));
1701
1.01k
        assert(m_txrequest.Count(nodeid) == 0);
1702
1.01k
    }
1703
1704
1.01k
    if (NetPermissions::HasFlag(node.m_permission_flags, NetPermissionFlags::BloomFilter)) {
  Branch (1704:9): [True: 172, False: 842]
1705
172
        our_services = static_cast<ServiceFlags>(our_services | NODE_BLOOM);
1706
172
    }
1707
1708
1.01k
    PeerRef peer = std::make_shared<Peer>(nodeid, our_services);
1709
1.01k
    {
1710
1.01k
        LOCK(m_peer_mutex);
1711
1.01k
        m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer);
1712
1.01k
    }
1713
1.01k
    if (!node.IsInboundConn()) {
  Branch (1713:9): [True: 647, False: 367]
1714
647
        PushNodeVersion(node, *peer);
1715
647
    }
1716
1.01k
}
1717
1718
void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler& scheduler)
1719
0
{
1720
0
    std::set<uint256> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
1721
1722
0
    for (const auto& txid : unbroadcast_txids) {
  Branch (1722:27): [True: 0, False: 0]
1723
0
        CTransactionRef tx = m_mempool.get(txid);
1724
1725
0
        if (tx != nullptr) {
  Branch (1725:13): [True: 0, False: 0]
1726
0
            RelayTransaction(txid, tx->GetWitnessHash());
1727
0
        } else {
1728
0
            m_mempool.RemoveUnbroadcastTx(txid, true);
1729
0
        }
1730
0
    }
1731
1732
    // Schedule next run for 10-15 minutes in the future.
1733
    // We add randomness on every cycle to avoid the possibility of P2P fingerprinting.
1734
0
    const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1735
0
    scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1736
0
}
1737
1738
void PeerManagerImpl::FinalizeNode(const CNode& node)
1739
1.01k
{
1740
1.01k
    NodeId nodeid = node.GetId();
1741
1.01k
    {
1742
1.01k
    LOCK(cs_main);
1743
1.01k
    {
1744
        // We remove the PeerRef from g_peer_map here, but we don't always
1745
        // destruct the Peer. Sometimes another thread is still holding a
1746
        // PeerRef, so the refcount is >= 1. Be careful not to do any
1747
        // processing here that assumes Peer won't be changed before it's
1748
        // destructed.
1749
1.01k
        PeerRef peer = RemovePeer(nodeid);
1750
1.01k
        assert(peer != nullptr);
1751
1.01k
        m_wtxid_relay_peers -= peer->m_wtxid_relay;
1752
1.01k
        assert(m_wtxid_relay_peers >= 0);
1753
1.01k
    }
1754
1.01k
    CNodeState *state = State(nodeid);
1755
1.01k
    assert(state != nullptr);
1756
1757
1.01k
    if (state->fSyncStarted)
  Branch (1757:9): [True: 85, False: 929]
1758
85
        nSyncStarted--;
1759
1760
1.01k
    for (const QueuedBlock& entry : state->vBlocksInFlight) {
  Branch (1760:35): [True: 0, False: 1.01k]
1761
0
        auto range = mapBlocksInFlight.equal_range(entry.pindex->GetBlockHash());
1762
0
        while (range.first != range.second) {
  Branch (1762:16): [True: 0, False: 0]
1763
0
            auto [node_id, list_it] = range.first->second;
1764
0
            if (node_id != nodeid) {
  Branch (1764:17): [True: 0, False: 0]
1765
0
                range.first++;
1766
0
            } else {
1767
0
                range.first = mapBlocksInFlight.erase(range.first);
1768
0
            }
1769
0
        }
1770
0
    }
1771
1.01k
    m_orphanage.EraseForPeer(nodeid);
1772
1.01k
    m_txrequest.DisconnectedPeer(nodeid);
1773
1.01k
    if (m_txreconciliation) m_txreconciliation->ForgetPeer(nodeid);
  Branch (1773:9): [True: 1.01k, False: 0]
1774
1.01k
    m_num_preferred_download_peers -= state->fPreferredDownload;
1775
1.01k
    m_peers_downloading_from -= (!state->vBlocksInFlight.empty());
1776
1.01k
    assert(m_peers_downloading_from >= 0);
1777
1.01k
    m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect;
1778
1.01k
    assert(m_outbound_peers_with_protect_from_disconnect >= 0);
1779
1780
1.01k
    m_node_states.erase(nodeid);
1781
1782
1.01k
    if (m_node_states.empty()) {
  Branch (1782:9): [True: 575, False: 439]
1783
        // Do a consistency check after the last peer is removed.
1784
575
        assert(mapBlocksInFlight.empty());
1785
575
        assert(m_num_preferred_download_peers == 0);
1786
575
        assert(m_peers_downloading_from == 0);
1787
575
        assert(m_outbound_peers_with_protect_from_disconnect == 0);
1788
575
        assert(m_wtxid_relay_peers == 0);
1789
575
        assert(m_txrequest.Size() == 0);
1790
575
        assert(m_orphanage.Size() == 0);
1791
575
    }
1792
1.01k
    } // cs_main
1793
1.01k
    if (node.fSuccessfullyConnected &&
  Branch (1793:9): [True: 163, False: 851]
1794
1.01k
        !node.IsBlockOnlyConn() && !node.IsInboundConn()) {
  Branch (1794:9): [True: 147, False: 16]
  Branch (1794:36): [True: 111, False: 36]
1795
        // Only change visible addrman state for full outbound peers.  We don't
1796
        // call Connected() for feeler connections since they don't have
1797
        // fSuccessfullyConnected set.
1798
111
        m_addrman.Connected(node.addr);
1799
111
    }
1800
1.01k
    {
1801
1.01k
        LOCK(m_headers_presync_mutex);
1802
1.01k
        m_headers_presync_stats.erase(nodeid);
1803
1.01k
    }
1804
1.01k
    LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
1805
1.01k
}
1806
1807
bool PeerManagerImpl::HasAllDesirableServiceFlags(ServiceFlags services) const
1808
803
{
1809
    // Shortcut for (services & GetDesirableServiceFlags(services)) == GetDesirableServiceFlags(services)
1810
803
    return !(GetDesirableServiceFlags(services) & (~services));
1811
803
}
1812
1813
ServiceFlags PeerManagerImpl::GetDesirableServiceFlags(ServiceFlags services) const
1814
803
{
1815
803
    if (services & NODE_NETWORK_LIMITED) {
  Branch (1815:9): [True: 346, False: 457]
1816
        // Limited peers are desirable when we are close to the tip.
1817
346
        if (ApproximateBestBlockDepth() < NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS) {
  Branch (1817:13): [True: 0, False: 346]
1818
0
            return ServiceFlags(NODE_NETWORK_LIMITED | NODE_WITNESS);
1819
0
        }
1820
346
    }
1821
803
    return ServiceFlags(NODE_NETWORK | NODE_WITNESS);
1822
803
}
1823
1824
PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const
1825
16.9k
{
1826
16.9k
    LOCK(m_peer_mutex);
1827
16.9k
    auto it = m_peer_map.find(id);
1828
16.9k
    return it != m_peer_map.end() ? it->second : nullptr;
  Branch (1828:12): [True: 16.9k, False: 0]
1829
16.9k
}
1830
1831
PeerRef PeerManagerImpl::RemovePeer(NodeId id)
1832
1.01k
{
1833
1.01k
    PeerRef ret;
1834
1.01k
    LOCK(m_peer_mutex);
1835
1.01k
    auto it = m_peer_map.find(id);
1836
1.01k
    if (it != m_peer_map.end()) {
  Branch (1836:9): [True: 1.01k, False: 0]
1837
1.01k
        ret = std::move(it->second);
1838
1.01k
        m_peer_map.erase(it);
1839
1.01k
    }
1840
1.01k
    return ret;
1841
1.01k
}
1842
1843
bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const
1844
0
{
1845
0
    {
1846
0
        LOCK(cs_main);
1847
0
        const CNodeState* state = State(nodeid);
1848
0
        if (state == nullptr)
  Branch (1848:13): [True: 0, False: 0]
1849
0
            return false;
1850
0
        stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
  Branch (1850:29): [True: 0, False: 0]
1851
0
        stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
  Branch (1851:31): [True: 0, False: 0]
1852
0
        for (const QueuedBlock& queue : state->vBlocksInFlight) {
  Branch (1852:39): [True: 0, False: 0]
1853
0
            if (queue.pindex)
  Branch (1853:17): [True: 0, False: 0]
1854
0
                stats.vHeightInFlight.push_back(queue.pindex->nHeight);
1855
0
        }
1856
0
    }
1857
1858
0
    PeerRef peer = GetPeerRef(nodeid);
1859
0
    if (peer == nullptr) return false;
  Branch (1859:9): [True: 0, False: 0]
1860
0
    stats.their_services = peer->m_their_services;
1861
0
    stats.m_starting_height = peer->m_starting_height;
1862
    // It is common for nodes with good ping times to suddenly become lagged,
1863
    // due to a new block arriving or other large transfer.
1864
    // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
1865
    // since pingtime does not update until the ping is complete, which might take a while.
1866
    // So, if a ping is taking an unusually long time in flight,
1867
    // the caller can immediately detect that this is happening.
1868
0
    auto ping_wait{0us};
1869
0
    if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) {
  Branch (1869:9): [True: 0, False: 0]
  Branch (1869:9): [True: 0, False: 0]
  Branch (1869:43): [True: 0, False: 0]
1870
0
        ping_wait = GetTime<std::chrono::microseconds>() - peer->m_ping_start.load();
1871
0
    }
1872
1873
0
    if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
  Branch (1873:45): [True: 0, False: 0]
1874
0
        stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs);
1875
0
        stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load();
1876
0
    } else {
1877
0
        stats.m_relay_txs = false;
1878
0
        stats.m_fee_filter_received = 0;
1879
0
    }
1880
1881
0
    stats.m_ping_wait = ping_wait;
1882
0
    stats.m_addr_processed = peer->m_addr_processed.load();
1883
0
    stats.m_addr_rate_limited = peer->m_addr_rate_limited.load();
1884
0
    stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load();
1885
0
    {
1886
0
        LOCK(peer->m_headers_sync_mutex);
1887
0
        if (peer->m_headers_sync) {
  Branch (1887:13): [True: 0, False: 0]
1888
0
            stats.presync_height = peer->m_headers_sync->GetPresyncHeight();
1889
0
        }
1890
0
    }
1891
0
    stats.time_offset = peer->m_time_offset;
1892
1893
0
    return true;
1894
0
}
1895
1896
PeerManagerInfo PeerManagerImpl::GetInfo() const
1897
0
{
1898
0
    return PeerManagerInfo{
1899
0
        .median_outbound_time_offset = m_outbound_time_offsets.Median(),
1900
0
        .ignores_incoming_txs = m_opts.ignore_incoming_txs,
1901
0
    };
1902
0
}
1903
1904
void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef& tx)
1905
0
{
1906
0
    if (m_opts.max_extra_txs <= 0)
  Branch (1906:9): [True: 0, False: 0]
1907
0
        return;
1908
0
    if (!vExtraTxnForCompact.size())
  Branch (1908:9): [True: 0, False: 0]
1909
0
        vExtraTxnForCompact.resize(m_opts.max_extra_txs);
1910
0
    vExtraTxnForCompact[vExtraTxnForCompactIt] = tx;
1911
0
    vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % m_opts.max_extra_txs;
1912
0
}
1913
1914
void PeerManagerImpl::Misbehaving(Peer& peer, const std::string& message)
1915
0
{
1916
0
    LOCK(peer.m_misbehavior_mutex);
1917
1918
0
    const std::string message_prefixed = message.empty() ? "" : (": " + message);
  Branch (1918:42): [True: 0, False: 0]
1919
0
    peer.m_should_discourage = true;
1920
0
    LogPrint(BCLog::NET, "Misbehaving: peer=%d%s\n", peer.m_id, message_prefixed);
1921
0
}
1922
1923
void PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
1924
                                              bool via_compact_block, const std::string& message)
1925
0
{
1926
0
    PeerRef peer{GetPeerRef(nodeid)};
1927
0
    switch (state.GetResult()) {
  Branch (1927:13): [True: 0, False: 0]
1928
0
    case BlockValidationResult::BLOCK_RESULT_UNSET:
  Branch (1928:5): [True: 0, False: 0]
1929
0
        break;
1930
0
    case BlockValidationResult::BLOCK_HEADER_LOW_WORK:
  Branch (1930:5): [True: 0, False: 0]
1931
        // We didn't try to process the block because the header chain may have
1932
        // too little work.
1933
0
        break;
1934
    // The node is providing invalid data:
1935
0
    case BlockValidationResult::BLOCK_CONSENSUS:
  Branch (1935:5): [True: 0, False: 0]
1936
0
    case BlockValidationResult::BLOCK_MUTATED:
  Branch (1936:5): [True: 0, False: 0]
1937
0
        if (!via_compact_block) {
  Branch (1937:13): [True: 0, False: 0]
1938
0
            if (peer) Misbehaving(*peer, message);
  Branch (1938:17): [True: 0, False: 0]
1939
0
            return;
1940
0
        }
1941
0
        break;
1942
0
    case BlockValidationResult::BLOCK_CACHED_INVALID:
  Branch (1942:5): [True: 0, False: 0]
1943
0
        {
1944
0
            LOCK(cs_main);
1945
0
            CNodeState *node_state = State(nodeid);
1946
0
            if (node_state == nullptr) {
  Branch (1946:17): [True: 0, False: 0]
1947
0
                break;
1948
0
            }
1949
1950
            // Discourage outbound (but not inbound) peers if on an invalid chain.
1951
            // Exempt HB compact block peers. Manual connections are always protected from discouragement.
1952
0
            if (!via_compact_block && !node_state->m_is_inbound) {
  Branch (1952:17): [True: 0, False: 0]
  Branch (1952:39): [True: 0, False: 0]
1953
0
                if (peer) Misbehaving(*peer, message);
  Branch (1953:21): [True: 0, False: 0]
1954
0
                return;
1955
0
            }
1956
0
            break;
1957
0
        }
1958
0
    case BlockValidationResult::BLOCK_INVALID_HEADER:
  Branch (1958:5): [True: 0, False: 0]
1959
0
    case BlockValidationResult::BLOCK_CHECKPOINT:
  Branch (1959:5): [True: 0, False: 0]
1960
0
    case BlockValidationResult::BLOCK_INVALID_PREV:
  Branch (1960:5): [True: 0, False: 0]
1961
0
        if (peer) Misbehaving(*peer, message);
  Branch (1961:13): [True: 0, False: 0]
1962
0
        return;
1963
    // Conflicting (but not necessarily invalid) data or different policy:
1964
0
    case BlockValidationResult::BLOCK_MISSING_PREV:
  Branch (1964:5): [True: 0, False: 0]
1965
0
        if (peer) Misbehaving(*peer, message);
  Branch (1965:13): [True: 0, False: 0]
1966
0
        return;
1967
0
    case BlockValidationResult::BLOCK_RECENT_CONSENSUS_CHANGE:
  Branch (1967:5): [True: 0, False: 0]
1968
0
    case BlockValidationResult::BLOCK_TIME_FUTURE:
  Branch (1968:5): [True: 0, False: 0]
1969
0
        break;
1970
0
    }
1971
0
    if (message != "") {
  Branch (1971:9): [True: 0, False: 0]
1972
0
        LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message);
1973
0
    }
1974
0
}
1975
1976
void PeerManagerImpl::MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
1977
0
{
1978
0
    PeerRef peer{GetPeerRef(nodeid)};
1979
0
    switch (state.GetResult()) {
  Branch (1979:13): [True: 0, False: 0]
1980
0
    case TxValidationResult::TX_RESULT_UNSET:
  Branch (1980:5): [True: 0, False: 0]
1981
0
        break;
1982
    // The node is providing invalid data:
1983
0
    case TxValidationResult::TX_CONSENSUS:
  Branch (1983:5): [True: 0, False: 0]
1984
0
        if (peer) Misbehaving(*peer, "");
  Branch (1984:13): [True: 0, False: 0]
1985
0
        return;
1986
    // Conflicting (but not necessarily invalid) data or different policy:
1987
0
    case TxValidationResult::TX_RECENT_CONSENSUS_CHANGE:
  Branch (1987:5): [True: 0, False: 0]
1988
0
    case TxValidationResult::TX_INPUTS_NOT_STANDARD:
  Branch (1988:5): [True: 0, False: 0]
1989
0
    case TxValidationResult::TX_NOT_STANDARD:
  Branch (1989:5): [True: 0, False: 0]
1990
0
    case TxValidationResult::TX_MISSING_INPUTS:
  Branch (1990:5): [True: 0, False: 0]
1991
0
    case TxValidationResult::TX_PREMATURE_SPEND:
  Branch (1991:5): [True: 0, False: 0]
1992
0
    case TxValidationResult::TX_WITNESS_MUTATED:
  Branch (1992:5): [True: 0, False: 0]
1993
0
    case TxValidationResult::TX_WITNESS_STRIPPED:
  Branch (1993:5): [True: 0, False: 0]
1994
0
    case TxValidationResult::TX_CONFLICT:
  Branch (1994:5): [True: 0, False: 0]
1995
0
    case TxValidationResult::TX_MEMPOOL_POLICY:
  Branch (1995:5): [True: 0, False: 0]
1996
0
    case TxValidationResult::TX_NO_MEMPOOL:
  Branch (1996:5): [True: 0, False: 0]
1997
0
    case TxValidationResult::TX_RECONSIDERABLE:
  Branch (1997:5): [True: 0, False: 0]
1998
0
    case TxValidationResult::TX_UNKNOWN:
  Branch (1998:5): [True: 0, False: 0]
1999
0
        break;
2000
0
    }
2001
0
}
2002
2003
bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex* pindex)
2004
0
{
2005
0
    AssertLockHeld(cs_main);
2006
0
    if (m_chainman.ActiveChain().Contains(pindex)) return true;
  Branch (2006:9): [True: 0, False: 0]
2007
0
    return pindex->IsValid(BLOCK_VALID_SCRIPTS) && (m_chainman.m_best_header != nullptr) &&
  Branch (2007:12): [True: 0, False: 0]
  Branch (2007:52): [True: 0, False: 0]
2008
0
           (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) &&
  Branch (2008:12): [True: 0, False: 0]
2009
0
           (GetBlockProofEquivalentTime(*m_chainman.m_best_header, *pindex, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT);
  Branch (2009:12): [True: 0, False: 0]
2010
0
}
2011
2012
std::optional<std::string> PeerManagerImpl::FetchBlock(NodeId peer_id, const CBlockIndex& block_index)
2013
0
{
2014
0
    if (m_chainman.m_blockman.LoadingBlocks()) return "Loading blocks ...";
  Branch (2014:9): [True: 0, False: 0]
2015
2016
    // Ensure this peer exists and hasn't been disconnected
2017
0
    PeerRef peer = GetPeerRef(peer_id);
2018
0
    if (peer == nullptr) return "Peer does not exist";
  Branch (2018:9): [True: 0, False: 0]
2019
2020
    // Ignore pre-segwit peers
2021
0
    if (!CanServeWitnesses(*peer)) return "Pre-SegWit peer";
  Branch (2021:9): [True: 0, False: 0]
2022
2023
0
    LOCK(cs_main);
2024
2025
    // Forget about all prior requests
2026
0
    RemoveBlockRequest(block_index.GetBlockHash(), std::nullopt);
2027
2028
    // Mark block as in-flight
2029
0
    if (!BlockRequested(peer_id, block_index)) return "Already requested from this peer";
  Branch (2029:9): [True: 0, False: 0]
2030
2031
    // Construct message to request the block
2032
0
    const uint256& hash{block_index.GetBlockHash()};
2033
0
    std::vector<CInv> invs{CInv(MSG_BLOCK | MSG_WITNESS_FLAG, hash)};
2034
2035
    // Send block request message to the peer
2036
0
    bool success = m_connman.ForNode(peer_id, [this, &invs](CNode* node) {
2037
0
        this->MakeAndPushMessage(*node, NetMsgType::GETDATA, invs);
2038
0
        return true;
2039
0
    });
2040
2041
0
    if (!success) return "Peer not fully connected";
  Branch (2041:9): [True: 0, False: 0]
2042
2043
0
    LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n",
2044
0
                 hash.ToString(), peer_id);
2045
0
    return std::nullopt;
2046
0
}
2047
2048
std::unique_ptr<PeerManager> PeerManager::make(CConnman& connman, AddrMan& addrman,
2049
                                               BanMan* banman, ChainstateManager& chainman,
2050
                                               CTxMemPool& pool, node::Warnings& warnings, Options opts)
2051
575
{
2052
575
    return std::make_unique<PeerManagerImpl>(connman, addrman, banman, chainman, pool, warnings, opts);
2053
575
}
2054
2055
PeerManagerImpl::PeerManagerImpl(CConnman& connman, AddrMan& addrman,
2056
                                 BanMan* banman, ChainstateManager& chainman,
2057
                                 CTxMemPool& pool, node::Warnings& warnings, Options opts)
2058
575
    : m_rng{opts.deterministic_rng},
2059
575
      m_fee_filter_rounder{CFeeRate{DEFAULT_MIN_RELAY_TX_FEE}, m_rng},
2060
575
      m_chainparams(chainman.GetParams()),
2061
575
      m_connman(connman),
2062
575
      m_addrman(addrman),
2063
575
      m_banman(banman),
2064
575
      m_chainman(chainman),
2065
575
      m_mempool(pool),
2066
575
      m_warnings{warnings},
2067
575
      m_opts{opts}
2068
575
{
2069
    // While Erlay support is incomplete, it must be enabled explicitly via -txreconciliation.
2070
    // This argument can go away after Erlay support is complete.
2071
575
    if (opts.reconcile_txs) {
  Branch (2071:9): [True: 575, False: 0]
2072
575
        m_txreconciliation = std::make_unique<TxReconciliationTracker>(TXRECONCILIATION_VERSION);
2073
575
    }
2074
575
}
2075
2076
void PeerManagerImpl::StartScheduledTasks(CScheduler& scheduler)
2077
0
{
2078
    // Stale tip checking and peer eviction are on two different timers, but we
2079
    // don't want them to get out of sync due to drift in the scheduler, so we
2080
    // combine them in one function and schedule at the quicker (peer-eviction)
2081
    // timer.
2082
0
    static_assert(EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer");
2083
0
    scheduler.scheduleEvery([this] { this->CheckForStaleTipAndEvictPeers(); }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
2084
2085
    // schedule next run for 10-15 minutes in the future
2086
0
    const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
2087
0
    scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
2088
0
}
2089
2090
/**
2091
 * Evict orphan txn pool entries based on a newly connected
2092
 * block, remember the recently confirmed transactions, and delete tracked
2093
 * announcements for them. Also save the time of the last tip update and
2094
 * possibly reduce dynamic block stalling timeout.
2095
 */
2096
void PeerManagerImpl::BlockConnected(
2097
    ChainstateRole role,
2098
    const std::shared_ptr<const CBlock>& pblock,
2099
    const CBlockIndex* pindex)
2100
0
{
2101
    // Update this for all chainstate roles so that we don't mistakenly see peers
2102
    // helping us do background IBD as having a stale tip.
2103
0
    m_last_tip_update = GetTime<std::chrono::seconds>();
2104
2105
    // In case the dynamic timeout was doubled once or more, reduce it slowly back to its default value
2106
0
    auto stalling_timeout = m_block_stalling_timeout.load();
2107
0
    Assume(stalling_timeout >= BLOCK_STALLING_TIMEOUT_DEFAULT);
2108
0
    if (stalling_timeout != BLOCK_STALLING_TIMEOUT_DEFAULT) {
  Branch (2108:9): [True: 0, False: 0]
2109
0
        const auto new_timeout = std::max(std::chrono::duration_cast<std::chrono::seconds>(stalling_timeout * 0.85), BLOCK_STALLING_TIMEOUT_DEFAULT);
2110
0
        if (m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
  Branch (2110:13): [True: 0, False: 0]
2111
0
            LogPrint(BCLog::NET, "Decreased stalling timeout to %d seconds\n", count_seconds(new_timeout));
2112
0
        }
2113
0
    }
2114
2115
    // The following task can be skipped since we don't maintain a mempool for
2116
    // the ibd/background chainstate.
2117
0
    if (role == ChainstateRole::BACKGROUND) {
  Branch (2117:9): [True: 0, False: 0]
2118
0
        return;
2119
0
    }
2120
0
    m_orphanage.EraseForBlock(*pblock);
2121
2122
0
    {
2123
0
        LOCK(m_recent_confirmed_transactions_mutex);
2124
0
        for (const auto& ptx : pblock->vtx) {
  Branch (2124:30): [True: 0, False: 0]
2125
0
            RecentConfirmedTransactionsFilter().insert(ptx->GetHash().ToUint256());
2126
0
            if (ptx->HasWitness()) {
  Branch (2126:17): [True: 0, False: 0]
2127
0
                RecentConfirmedTransactionsFilter().insert(ptx->GetWitnessHash().ToUint256());
2128
0
            }
2129
0
        }
2130
0
    }
2131
0
    {
2132
0
        LOCK(cs_main);
2133
0
        for (const auto& ptx : pblock->vtx) {
  Branch (2133:30): [True: 0, False: 0]
2134
0
            m_txrequest.ForgetTxHash(ptx->GetHash());
2135
0
            m_txrequest.ForgetTxHash(ptx->GetWitnessHash());
2136
0
        }
2137
0
    }
2138
0
}
2139
2140
void PeerManagerImpl::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex)
2141
0
{
2142
    // To avoid relay problems with transactions that were previously
2143
    // confirmed, clear our filter of recently confirmed transactions whenever
2144
    // there's a reorg.
2145
    // This means that in a 1-block reorg (where 1 block is disconnected and
2146
    // then another block reconnected), our filter will drop to having only one
2147
    // block's worth of transactions in it, but that should be fine, since
2148
    // presumably the most common case of relaying a confirmed transaction
2149
    // should be just after a new block containing it is found.
2150
0
    LOCK(m_recent_confirmed_transactions_mutex);
2151
0
    RecentConfirmedTransactionsFilter().reset();
2152
0
}
2153
2154
/**
2155
 * Maintain state about the best-seen block and fast-announce a compact block
2156
 * to compatible peers.
2157
 */
2158
void PeerManagerImpl::NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock)
2159
0
{
2160
0
    auto pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock, FastRandomContext().rand64());
2161
2162
0
    LOCK(cs_main);
2163
2164
0
    if (pindex->nHeight <= m_highest_fast_announce)
  Branch (2164:9): [True: 0, False: 0]
2165
0
        return;
2166
0
    m_highest_fast_announce = pindex->nHeight;
2167
2168
0
    if (!DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) return;
  Branch (2168:9): [True: 0, False: 0]
2169
2170
0
    uint256 hashBlock(pblock->GetHash());
2171
0
    const std::shared_future<CSerializedNetMsg> lazy_ser{
2172
0
        std::async(std::launch::deferred, [&] { return NetMsg::Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })};
2173
2174
0
    {
2175
0
        auto most_recent_block_txs = std::make_unique<std::map<uint256, CTransactionRef>>();
2176
0
        for (const auto& tx : pblock->vtx) {
  Branch (2176:29): [True: 0, False: 0]
2177
0
            most_recent_block_txs->emplace(tx->GetHash(), tx);
2178
0
            most_recent_block_txs->emplace(tx->GetWitnessHash(), tx);
2179
0
        }
2180
2181
0
        LOCK(m_most_recent_block_mutex);
2182
0
        m_most_recent_block_hash = hashBlock;
2183
0
        m_most_recent_block = pblock;
2184
0
        m_most_recent_compact_block = pcmpctblock;
2185
0
        m_most_recent_block_txs = std::move(most_recent_block_txs);
2186
0
    }
2187
2188
0
    m_connman.ForEachNode([this, pindex, &lazy_ser, &hashBlock](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
2189
0
        AssertLockHeld(::cs_main);
2190
2191
0
        if (pnode->GetCommonVersion() < INVALID_CB_NO_BAN_VERSION || pnode->fDisconnect)
  Branch (2191:13): [True: 0, False: 0]
  Branch (2191:70): [True: 0, False: 0]
2192
0
            return;
2193
0
        ProcessBlockAvailability(pnode->GetId());
2194
0
        CNodeState &state = *State(pnode->GetId());
2195
        // If the peer has, or we announced to them the previous block already,
2196
        // but we don't think they have this one, go ahead and announce it
2197
0
        if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) {
  Branch (2197:13): [True: 0, False: 0]
  Branch (2197:49): [True: 0, False: 0]
  Branch (2197:83): [True: 0, False: 0]
2198
2199
0
            LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock",
2200
0
                    hashBlock.ToString(), pnode->GetId());
2201
2202
0
            const CSerializedNetMsg& ser_cmpctblock{lazy_ser.get()};
2203
0
            PushMessage(*pnode, ser_cmpctblock.Copy());
2204
0
            state.pindexBestHeaderSent = pindex;
2205
0
        }
2206
0
    });
2207
0
}
2208
2209
/**
2210
 * Update our best height and announce any block hashes which weren't previously
2211
 * in m_chainman.ActiveChain() to our peers.
2212
 */
2213
void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
2214
0
{
2215
0
    SetBestBlock(pindexNew->nHeight, std::chrono::seconds{pindexNew->GetBlockTime()});
2216
2217
    // Don't relay inventory during initial block download.
2218
0
    if (fInitialDownload) return;
  Branch (2218:9): [True: 0, False: 0]
2219
2220
    // Find the hashes of all blocks that weren't previously in the best chain.
2221
0
    std::vector<uint256> vHashes;
2222
0
    const CBlockIndex *pindexToAnnounce = pindexNew;
2223
0
    while (pindexToAnnounce != pindexFork) {
  Branch (2223:12): [True: 0, False: 0]
2224
0
        vHashes.push_back(pindexToAnnounce->GetBlockHash());
2225
0
        pindexToAnnounce = pindexToAnnounce->pprev;
2226
0
        if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
  Branch (2226:13): [True: 0, False: 0]
2227
            // Limit announcements in case of a huge reorganization.
2228
            // Rely on the peer's synchronization mechanism in that case.
2229
0
            break;
2230
0
        }
2231
0
    }
2232
2233
0
    {
2234
0
        LOCK(m_peer_mutex);
2235
0
        for (auto& it : m_peer_map) {
  Branch (2235:23): [True: 0, False: 0]
2236
0
            Peer& peer = *it.second;
2237
0
            LOCK(peer.m_block_inv_mutex);
2238
0
            for (const uint256& hash : reverse_iterate(vHashes)) {
  Branch (2238:38): [True: 0, False: 0]
2239
0
                peer.m_blocks_for_headers_relay.push_back(hash);
2240
0
            }
2241
0
        }
2242
0
    }
2243
2244
0
    m_connman.WakeMessageHandler();
2245
0
}
2246
2247
/**
2248
 * Handle invalid block rejection and consequent peer discouragement, maintain which
2249
 * peers announce compact blocks.
2250
 */
2251
void PeerManagerImpl::BlockChecked(const CBlock& block, const BlockValidationState& state)
2252
0
{
2253
0
    LOCK(cs_main);
2254
2255
0
    const uint256 hash(block.GetHash());
2256
0
    std::map<uint256, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash);
2257
2258
    // If the block failed validation, we know where it came from and we're still connected
2259
    // to that peer, maybe punish.
2260
0
    if (state.IsInvalid() &&
  Branch (2260:9): [True: 0, False: 0]
  Branch (2260:9): [True: 0, False: 0]
2261
0
        it != mapBlockSource.end() &&
  Branch (2261:9): [True: 0, False: 0]
2262
0
        State(it->second.first)) {
  Branch (2262:9): [True: 0, False: 0]
2263
0
            MaybePunishNodeForBlock(/*nodeid=*/ it->second.first, state, /*via_compact_block=*/ !it->second.second);
2264
0
    }
2265
    // Check that:
2266
    // 1. The block is valid
2267
    // 2. We're not in initial block download
2268
    // 3. This is currently the best block we're aware of. We haven't updated
2269
    //    the tip yet so we have no way to check this directly here. Instead we
2270
    //    just check that there are currently no other blocks in flight.
2271
0
    else if (state.IsValid() &&
  Branch (2271:14): [True: 0, False: 0]
2272
0
             !m_chainman.IsInitialBlockDownload() &&
  Branch (2272:14): [True: 0, False: 0]
2273
0
             mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
  Branch (2273:14): [True: 0, False: 0]
2274
0
        if (it != mapBlockSource.end()) {
  Branch (2274:13): [True: 0, False: 0]
2275
0
            MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first);
2276
0
        }
2277
0
    }
2278
0
    if (it != mapBlockSource.end())
  Branch (2278:9): [True: 0, False: 0]
2279
0
        mapBlockSource.erase(it);
2280
0
}
2281
2282
//////////////////////////////////////////////////////////////////////////////
2283
//
2284
// Messages
2285
//
2286
2287
2288
bool PeerManagerImpl::AlreadyHaveTx(const GenTxid& gtxid, bool include_reconsiderable)
2289
0
{
2290
0
    if (m_chainman.ActiveChain().Tip()->GetBlockHash() != hashRecentRejectsChainTip) {
  Branch (2290:9): [True: 0, False: 0]
2291
        // If the chain tip has changed previously rejected transactions
2292
        // might be now valid, e.g. due to a nLockTime'd tx becoming valid,
2293
        // or a double-spend. Reset the rejects filter and give those
2294
        // txs a second chance.
2295
0
        hashRecentRejectsChainTip = m_chainman.ActiveChain().Tip()->GetBlockHash();
2296
0
        RecentRejectsFilter().reset();
2297
0
        RecentRejectsReconsiderableFilter().reset();
2298
0
    }
2299
2300
0
    const uint256& hash = gtxid.GetHash();
2301
2302
0
    if (gtxid.IsWtxid()) {
  Branch (2302:9): [True: 0, False: 0]
2303
        // Normal query by wtxid.
2304
0
        if (m_orphanage.HaveTx(Wtxid::FromUint256(hash))) return true;
  Branch (2304:13): [True: 0, False: 0]
2305
0
    } else {
2306
        // Never query by txid: it is possible that the transaction in the orphanage has the same
2307
        // txid but a different witness, which would give us a false positive result. If we decided
2308
        // not to request the transaction based on this result, an attacker could prevent us from
2309
        // downloading a transaction by intentionally creating a malleated version of it.  While
2310
        // only one (or none!) of these transactions can ultimately be confirmed, we have no way of
2311
        // discerning which one that is, so the orphanage can store multiple transactions with the
2312
        // same txid.
2313
        //
2314
        // While we won't query by txid, we can try to "guess" what the wtxid is based on the txid.
2315
        // A non-segwit transaction's txid == wtxid. Query this txid "casted" to a wtxid. This will
2316
        // help us find non-segwit transactions, saving bandwidth, and should have no false positives.
2317
0
        if (m_orphanage.HaveTx(Wtxid::FromUint256(hash))) return true;
  Branch (2317:13): [True: 0, False: 0]
2318
0
    }
2319
2320
0
    if (include_reconsiderable && RecentRejectsReconsiderableFilter().contains(hash)) return true;
  Branch (2320:9): [True: 0, False: 0]
  Branch (2320:35): [True: 0, False: 0]
2321
2322
0
    {
2323
0
        LOCK(m_recent_confirmed_transactions_mutex);
2324
0
        if (RecentConfirmedTransactionsFilter().contains(hash)) return true;
  Branch (2324:13): [True: 0, False: 0]
2325
0
    }
2326
2327
0
    return RecentRejectsFilter().contains(hash) || m_mempool.exists(gtxid);
  Branch (2327:12): [True: 0, False: 0]
  Branch (2327:52): [True: 0, False: 0]
2328
0
}
2329
2330
bool PeerManagerImpl::AlreadyHaveBlock(const uint256& block_hash)
2331
0
{
2332
0
    return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr;
2333
0
}
2334
2335
void PeerManagerImpl::SendPings()
2336
0
{
2337
0
    LOCK(m_peer_mutex);
2338
0
    for(auto& it : m_peer_map) it.second->m_ping_queued = true;
  Branch (2338:18): [True: 0, False: 0]
2339
0
}
2340
2341
void PeerManagerImpl::RelayTransaction(const uint256& txid, const uint256& wtxid)
2342
0
{
2343
0
    LOCK(m_peer_mutex);
2344
0
    for(auto& it : m_peer_map) {
  Branch (2344:18): [True: 0, False: 0]
2345
0
        Peer& peer = *it.second;
2346
0
        auto tx_relay = peer.GetTxRelay();
2347
0
        if (!tx_relay) continue;
  Branch (2347:13): [True: 0, False: 0]
2348
2349
0
        LOCK(tx_relay->m_tx_inventory_mutex);
2350
        // Only queue transactions for announcement once the version handshake
2351
        // is completed. The time of arrival for these transactions is
2352
        // otherwise at risk of leaking to a spy, if the spy is able to
2353
        // distinguish transactions received during the handshake from the rest
2354
        // in the announcement.
2355
0
        if (tx_relay->m_next_inv_send_time == 0s) continue;
  Branch (2355:13): [True: 0, False: 0]
2356
2357
0
        const uint256& hash{peer.m_wtxid_relay ? wtxid : txid};
  Branch (2357:29): [True: 0, False: 0]
2358
0
        if (!tx_relay->m_tx_inventory_known_filter.contains(hash)) {
  Branch (2358:13): [True: 0, False: 0]
2359
0
            tx_relay->m_tx_inventory_to_send.insert(hash);
2360
0
        }
2361
0
    };
2362
0
}
2363
2364
void PeerManagerImpl::RelayAddress(NodeId originator,
2365
                                   const CAddress& addr,
2366
                                   bool fReachable)
2367
0
{
2368
    // We choose the same nodes within a given 24h window (if the list of connected
2369
    // nodes does not change) and we don't relay to nodes that already know an
2370
    // address. So within 24h we will likely relay a given address once. This is to
2371
    // prevent a peer from unjustly giving their address better propagation by sending
2372
    // it to us repeatedly.
2373
2374
0
    if (!fReachable && !addr.IsRelayable()) return;
  Branch (2374:9): [True: 0, False: 0]
  Branch (2374:24): [True: 0, False: 0]
2375
2376
    // Relay to a limited number of other nodes
2377
    // Use deterministic randomness to send to the same nodes for 24 hours
2378
    // at a time so the m_addr_knowns of the chosen nodes prevent repeats
2379
0
    const uint64_t hash_addr{CServiceHash(0, 0)(addr)};
2380
0
    const auto current_time{GetTime<std::chrono::seconds>()};
2381
    // Adding address hash makes exact rotation time different per address, while preserving periodicity.
2382
0
    const uint64_t time_addr{(static_cast<uint64_t>(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)};
2383
0
    const CSipHasher hasher{m_connman.GetDeterministicRandomizer(RANDOMIZER_ID_ADDRESS_RELAY)
2384
0
                                .Write(hash_addr)
2385
0
                                .Write(time_addr)};
2386
2387
    // Relay reachable addresses to 2 peers. Unreachable addresses are relayed randomly to 1 or 2 peers.
2388
0
    unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1;
  Branch (2388:33): [True: 0, False: 0]
  Branch (2388:47): [True: 0, False: 0]
2389
2390
0
    std::array<std::pair<uint64_t, Peer*>, 2> best{{{0, nullptr}, {0, nullptr}}};
2391
0
    assert(nRelayNodes <= best.size());
2392
2393
0
    LOCK(m_peer_mutex);
2394
2395
0
    for (auto& [id, peer] : m_peer_map) {
  Branch (2395:27): [True: 0, False: 0]
2396
0
        if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) {
  Branch (2396:13): [True: 0, False: 0]
  Branch (2396:43): [True: 0, False: 0]
  Branch (2396:63): [True: 0, False: 0]
2397
0
            uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize();
2398
0
            for (unsigned int i = 0; i < nRelayNodes; i++) {
  Branch (2398:38): [True: 0, False: 0]
2399
0
                 if (hashKey > best[i].first) {
  Branch (2399:22): [True: 0, False: 0]
2400
0
                     std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1);
2401
0
                     best[i] = std::make_pair(hashKey, peer.get());
2402
0
                     break;
2403
0
                 }
2404
0
            }
2405
0
        }
2406
0
    };
2407
2408
0
    for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
  Branch (2408:30): [True: 0, False: 0]
  Branch (2408:49): [True: 0, False: 0]
2409
0
        PushAddress(*best[i].second, addr);
2410
0
    }
2411
0
}
2412
2413
void PeerManagerImpl::ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
2414
0
{
2415
0
    std::shared_ptr<const CBlock> a_recent_block;
2416
0
    std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
2417
0
    {
2418
0
        LOCK(m_most_recent_block_mutex);
2419
0
        a_recent_block = m_most_recent_block;
2420
0
        a_recent_compact_block = m_most_recent_compact_block;
2421
0
    }
2422
2423
0
    bool need_activate_chain = false;
2424
0
    {
2425
0
        LOCK(cs_main);
2426
0
        const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2427
0
        if (pindex) {
  Branch (2427:13): [True: 0, False: 0]
2428
0
            if (pindex->HaveNumChainTxs() && !pindex->IsValid(BLOCK_VALID_SCRIPTS) &&
  Branch (2428:17): [True: 0, False: 0]
  Branch (2428:46): [True: 0, False: 0]
2429
0
                    pindex->IsValid(BLOCK_VALID_TREE)) {
  Branch (2429:21): [True: 0, False: 0]
2430
                // If we have the block and all of its parents, but have not yet validated it,
2431
                // we might be in the middle of connecting it (ie in the unlock of cs_main
2432
                // before ActivateBestChain but after AcceptBlock).
2433
                // In this case, we need to run ActivateBestChain prior to checking the relay
2434
                // conditions below.
2435
0
                need_activate_chain = true;
2436
0
            }
2437
0
        }
2438
0
    } // release cs_main before calling ActivateBestChain
2439
0
    if (need_activate_chain) {
  Branch (2439:9): [True: 0, False: 0]
2440
0
        BlockValidationState state;
2441
0
        if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
  Branch (2441:13): [True: 0, False: 0]
2442
0
            LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
2443
0
        }
2444
0
    }
2445
2446
0
    const CBlockIndex* pindex{nullptr};
2447
0
    const CBlockIndex* tip{nullptr};
2448
0
    bool can_direct_fetch{false};
2449
0
    FlatFilePos block_pos{};
2450
0
    {
2451
0
        LOCK(cs_main);
2452
0
        pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2453
0
        if (!pindex) {
  Branch (2453:13): [True: 0, False: 0]
2454
0
            return;
2455
0
        }
2456
0
        if (!BlockRequestAllowed(pindex)) {
  Branch (2456:13): [True: 0, False: 0]
2457
0
            LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom.GetId());
2458
0
            return;
2459
0
        }
2460
        // disconnect node in case we have reached the outbound limit for serving historical blocks
2461
0
        if (m_connman.OutboundTargetReached(true) &&
  Branch (2461:13): [True: 0, False: 0]
2462
0
            (((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) &&
  Branch (2462:15): [True: 0, False: 0]
  Branch (2462:56): [True: 0, False: 0]
  Branch (2462:151): [True: 0, False: 0]
2463
0
            !pfrom.HasPermission(NetPermissionFlags::Download) // nodes with the download permission may exceed target
  Branch (2463:13): [True: 0, False: 0]
2464
0
        ) {
2465
0
            LogPrint(BCLog::NET, "historical block serving limit reached, disconnect peer=%d\n", pfrom.GetId());
2466
0
            pfrom.fDisconnect = true;
2467
0
            return;
2468
0
        }
2469
0
        tip = m_chainman.ActiveChain().Tip();
2470
        // Avoid leaking prune-height by never sending blocks below the NODE_NETWORK_LIMITED threshold
2471
0
        if (!pfrom.HasPermission(NetPermissionFlags::NoBan) && (
  Branch (2471:13): [True: 0, False: 0]
2472
0
                (((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (tip->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2 /* add two blocks buffer extension for possible races */) )
  Branch (2472:18): [True: 0, False: 0]
  Branch (2472:92): [True: 0, False: 0]
  Branch (2472:150): [True: 0, False: 0]
2473
0
           )) {
2474
0
            LogPrint(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED threshold, disconnect peer=%d\n", pfrom.GetId());
2475
            //disconnect node and prevent it from stalling (would otherwise wait for the missing block)
2476
0
            pfrom.fDisconnect = true;
2477
0
            return;
2478
0
        }
2479
        // Pruned nodes may have deleted the block, so check whether
2480
        // it's available before trying to send.
2481
0
        if (!(pindex->nStatus & BLOCK_HAVE_DATA)) {
  Branch (2481:13): [True: 0, False: 0]
2482
0
            return;
2483
0
        }
2484
0
        can_direct_fetch = CanDirectFetch();
2485
0
        block_pos = pindex->GetBlockPos();
2486
0
    }
2487
2488
0
    std::shared_ptr<const CBlock> pblock;
2489
0
    if (a_recent_block && a_recent_block->GetHash() == pindex->GetBlockHash()) {
  Branch (2489:9): [True: 0, False: 0]
  Branch (2489:9): [True: 0, False: 0]
  Branch (2489:27): [True: 0, False: 0]
2490
0
        pblock = a_recent_block;
2491
0
    } else if (inv.IsMsgWitnessBlk()) {
  Branch (2491:16): [True: 0, False: 0]
2492
        // Fast-path: in this case it is possible to serve the block directly from disk,
2493
        // as the network format matches the format on disk
2494
0
        std::vector<uint8_t> block_data;
2495
0
        if (!m_chainman.m_blockman.ReadRawBlockFromDisk(block_data, block_pos)) {
  Branch (2495:13): [True: 0, False: 0]
2496
0
            if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2497
0
                LogPrint(BCLog::NET, "Block was pruned before it could be read, disconnect peer=%s\n", pfrom.GetId());
2498
0
            } else {
2499
0
                LogError("Cannot load block from disk, disconnect peer=%d\n", pfrom.GetId());
2500
0
            }
2501
0
            pfrom.fDisconnect = true;
2502
0
            return;
2503
0
        }
2504
0
        MakeAndPushMessage(pfrom, NetMsgType::BLOCK, Span{block_data});
2505
        // Don't set pblock as we've sent the block
2506
0
    } else {
2507
        // Send block from disk
2508
0
        std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
2509
0
        if (!m_chainman.m_blockman.ReadBlockFromDisk(*pblockRead, block_pos)) {
  Branch (2509:13): [True: 0, False: 0]
2510
0
            if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2511
0
                LogPrint(BCLog::NET, "Block was pruned before it could be read, disconnect peer=%s\n", pfrom.GetId());
2512
0
            } else {
2513
0
                LogError("Cannot load block from disk, disconnect peer=%d\n", pfrom.GetId());
2514
0
            }
2515
0
            pfrom.fDisconnect = true;
2516
0
            return;
2517
0
        }
2518
0
        pblock = pblockRead;
2519
0
    }
2520
0
    if (pblock) {
  Branch (2520:9): [True: 0, False: 0]
2521
0
        if (inv.IsMsgBlk()) {
  Branch (2521:13): [True: 0, False: 0]
2522
0
            MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_NO_WITNESS(*pblock));
2523
0
        } else if (inv.IsMsgWitnessBlk()) {
  Branch (2523:20): [True: 0, False: 0]
2524
0
            MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2525
0
        } else if (inv.IsMsgFilteredBlk()) {
  Branch (2525:20): [True: 0, False: 0]
2526
0
            bool sendMerkleBlock = false;
2527
0
            CMerkleBlock merkleBlock;
2528
0
            if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
  Branch (2528:52): [True: 0, False: 0]
2529
0
                LOCK(tx_relay->m_bloom_filter_mutex);
2530
0
                if (tx_relay->m_bloom_filter) {
  Branch (2530:21): [True: 0, False: 0]
2531
0
                    sendMerkleBlock = true;
2532
0
                    merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter);
2533
0
                }
2534
0
            }
2535
0
            if (sendMerkleBlock) {
  Branch (2535:17): [True: 0, False: 0]
2536
0
                MakeAndPushMessage(pfrom, NetMsgType::MERKLEBLOCK, merkleBlock);
2537
                // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
2538
                // This avoids hurting performance by pointlessly requiring a round-trip
2539
                // Note that there is currently no way for a node to request any single transactions we didn't send here -
2540
                // they must either disconnect and retry or request the full block.
2541
                // Thus, the protocol spec specified allows for us to provide duplicate txn here,
2542
                // however we MUST always provide at least what the remote peer needs
2543
0
                typedef std::pair<unsigned int, uint256> PairType;
2544
0
                for (PairType& pair : merkleBlock.vMatchedTxn)
  Branch (2544:37): [True: 0, False: 0]
2545
0
                    MakeAndPushMessage(pfrom, NetMsgType::TX, TX_NO_WITNESS(*pblock->vtx[pair.first]));
2546
0
            }
2547
            // else
2548
            // no response
2549
0
        } else if (inv.IsMsgCmpctBlk()) {
  Branch (2549:20): [True: 0, False: 0]
2550
            // If a peer is asking for old blocks, we're almost guaranteed
2551
            // they won't have a useful mempool to match against a compact block,
2552
            // and we don't feel like constructing the object for them, so
2553
            // instead we respond with the full, non-compact block.
2554
0
            if (can_direct_fetch && pindex->nHeight >= tip->nHeight - MAX_CMPCTBLOCK_DEPTH) {
  Branch (2554:17): [True: 0, False: 0]
  Branch (2554:37): [True: 0, False: 0]
2555
0
                if (a_recent_compact_block && a_recent_compact_block->header.GetHash() == pindex->GetBlockHash()) {
  Branch (2555:21): [True: 0, False: 0]
  Branch (2555:21): [True: 0, False: 0]
  Branch (2555:47): [True: 0, False: 0]
2556
0
                    MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, *a_recent_compact_block);
2557
0
                } else {
2558
0
                    CBlockHeaderAndShortTxIDs cmpctblock{*pblock, FastRandomContext().rand64()};
2559
0
                    MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, cmpctblock);
2560
0
                }
2561
0
            } else {
2562
0
                MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2563
0
            }
2564
0
        }
2565
0
    }
2566
2567
0
    {
2568
0
        LOCK(peer.m_block_inv_mutex);
2569
        // Trigger the peer node to send a getblocks request for the next batch of inventory
2570
0
        if (inv.hash == peer.m_continuation_block) {
  Branch (2570:13): [True: 0, False: 0]
2571
            // Send immediately. This must send even if redundant,
2572
            // and we want it right after the last block so they don't
2573
            // wait for other stuff first.
2574
0
            std::vector<CInv> vInv;
2575
0
            vInv.emplace_back(MSG_BLOCK, tip->GetBlockHash());
2576
0
            MakeAndPushMessage(pfrom, NetMsgType::INV, vInv);
2577
0
            peer.m_continuation_block.SetNull();
2578
0
        }
2579
0
    }
2580
0
}
2581
2582
CTransactionRef PeerManagerImpl::FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
2583
0
{
2584
    // If a tx was in the mempool prior to the last INV for this peer, permit the request.
2585
0
    auto txinfo = m_mempool.info_for_relay(gtxid, tx_relay.m_last_inv_sequence);
2586
0
    if (txinfo.tx) {
  Branch (2586:9): [True: 0, False: 0]
2587
0
        return std::move(txinfo.tx);
2588
0
    }
2589
2590
    // Or it might be from the most recent block
2591
0
    {
2592
0
        LOCK(m_most_recent_block_mutex);
2593
0
        if (m_most_recent_block_txs != nullptr) {
  Branch (2593:13): [True: 0, False: 0]
2594
0
            auto it = m_most_recent_block_txs->find(gtxid.GetHash());
2595
0
            if (it != m_most_recent_block_txs->end()) return it->second;
  Branch (2595:17): [True: 0, False: 0]
2596
0
        }
2597
0
    }
2598
2599
0
    return {};
2600
0
}
2601
2602
void PeerManagerImpl::ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
2603
0
{
2604
0
    AssertLockNotHeld(cs_main);
2605
2606
0
    auto tx_relay = peer.GetTxRelay();
2607
2608
0
    std::deque<CInv>::iterator it = peer.m_getdata_requests.begin();
2609
0
    std::vector<CInv> vNotFound;
2610
2611
    // Process as many TX items from the front of the getdata queue as
2612
    // possible, since they're common and it's efficient to batch process
2613
    // them.
2614
0
    while (it != peer.m_getdata_requests.end() && it->IsGenTxMsg()) {
  Branch (2614:12): [True: 0, False: 0]
  Branch (2614:12): [True: 0, False: 0]
  Branch (2614:51): [True: 0, False: 0]
2615
0
        if (interruptMsgProc) return;
  Branch (2615:13): [True: 0, False: 0]
2616
        // The send buffer provides backpressure. If there's no space in
2617
        // the buffer, pause processing until the next call.
2618
0
        if (pfrom.fPauseSend) break;
  Branch (2618:13): [True: 0, False: 0]
2619
2620
0
        const CInv &inv = *it++;
2621
2622
0
        if (tx_relay == nullptr) {
  Branch (2622:13): [True: 0, False: 0]
2623
            // Ignore GETDATA requests for transactions from block-relay-only
2624
            // peers and peers that asked us not to announce transactions.
2625
0
            continue;
2626
0
        }
2627
2628
0
        CTransactionRef tx = FindTxForGetData(*tx_relay, ToGenTxid(inv));
2629
0
        if (tx) {
  Branch (2629:13): [True: 0, False: 0]
2630
            // WTX and WITNESS_TX imply we serialize with witness
2631
0
            const auto maybe_with_witness = (inv.IsMsgTx() ? TX_NO_WITNESS : TX_WITH_WITNESS);
  Branch (2631:46): [True: 0, False: 0]
2632
0
            MakeAndPushMessage(pfrom, NetMsgType::TX, maybe_with_witness(*tx));
2633
0
            m_mempool.RemoveUnbroadcastTx(tx->GetHash());
2634
0
        } else {
2635
0
            vNotFound.push_back(inv);
2636
0
        }
2637
0
    }
2638
2639
    // Only process one BLOCK item per call, since they're uncommon and can be
2640
    // expensive to process.
2641
0
    if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) {
  Branch (2641:9): [True: 0, False: 0]
  Branch (2641:9): [True: 0, False: 0]
  Branch (2641:48): [True: 0, False: 0]
2642
0
        const CInv &inv = *it++;
2643
0
        if (inv.IsGenBlkMsg()) {
  Branch (2643:13): [True: 0, False: 0]
2644
0
            ProcessGetBlockData(pfrom, peer, inv);
2645
0
        }
2646
        // else: If the first item on the queue is an unknown type, we erase it
2647
        // and continue processing the queue on the next call.
2648
0
    }
2649
2650
0
    peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it);
2651
2652
0
    if (!vNotFound.empty()) {
  Branch (2652:9): [True: 0, False: 0]
2653
        // Let the peer know that we didn't find what it asked for, so it doesn't
2654
        // have to wait around forever.
2655
        // SPV clients care about this message: it's needed when they are
2656
        // recursively walking the dependencies of relevant unconfirmed
2657
        // transactions. SPV clients want to do that because they want to know
2658
        // about (and store and rebroadcast and risk analyze) the dependencies
2659
        // of transactions relevant to them, without having to download the
2660
        // entire memory pool.
2661
        // Also, other nodes can use these messages to automatically request a
2662
        // transaction from some other peer that announced it, and stop
2663
        // waiting for us to respond.
2664
        // In normal operation, we often send NOTFOUND messages for parents of
2665
        // transactions that we relay; if a peer is missing a parent, they may
2666
        // assume we have them and request the parents from us.
2667
0
        MakeAndPushMessage(pfrom, NetMsgType::NOTFOUND, vNotFound);
2668
0
    }
2669
0
}
2670
2671
uint32_t PeerManagerImpl::GetFetchFlags(const Peer& peer) const
2672
0
{
2673
0
    uint32_t nFetchFlags = 0;
2674
0
    if (CanServeWitnesses(peer)) {
  Branch (2674:9): [True: 0, False: 0]
2675
0
        nFetchFlags |= MSG_WITNESS_FLAG;
2676
0
    }
2677
0
    return nFetchFlags;
2678
0
}
2679
2680
void PeerManagerImpl::SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req)
2681
0
{
2682
0
    BlockTransactions resp(req);
2683
0
    for (size_t i = 0; i < req.indexes.size(); i++) {
  Branch (2683:24): [True: 0, False: 0]
2684
0
        if (req.indexes[i] >= block.vtx.size()) {
  Branch (2684:13): [True: 0, False: 0]
2685
0
            Misbehaving(peer, "getblocktxn with out-of-bounds tx indices");
2686
0
            return;
2687
0
        }
2688
0
        resp.txn[i] = block.vtx[req.indexes[i]];
2689
0
    }
2690
2691
0
    MakeAndPushMessage(pfrom, NetMsgType::BLOCKTXN, resp);
2692
0
}
2693
2694
bool PeerManagerImpl::CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer)
2695
0
{
2696
    // Do these headers have proof-of-work matching what's claimed?
2697
0
    if (!HasValidProofOfWork(headers, consensusParams)) {
  Branch (2697:9): [True: 0, False: 0]
2698
0
        Misbehaving(peer, "header with invalid proof of work");
2699
0
        return false;
2700
0
    }
2701
2702
    // Are these headers connected to each other?
2703
0
    if (!CheckHeadersAreContinuous(headers)) {
  Branch (2703:9): [True: 0, False: 0]
2704
0
        Misbehaving(peer, "non-continuous headers sequence");
2705
0
        return false;
2706
0
    }
2707
0
    return true;
2708
0
}
2709
2710
arith_uint256 PeerManagerImpl::GetAntiDoSWorkThreshold()
2711
0
{
2712
0
    arith_uint256 near_chaintip_work = 0;
2713
0
    LOCK(cs_main);
2714
0
    if (m_chainman.ActiveChain().Tip() != nullptr) {
  Branch (2714:9): [True: 0, False: 0]
2715
0
        const CBlockIndex *tip = m_chainman.ActiveChain().Tip();
2716
        // Use a 144 block buffer, so that we'll accept headers that fork from
2717
        // near our tip.
2718
0
        near_chaintip_work = tip->nChainWork - std::min<arith_uint256>(144*GetBlockProof(*tip), tip->nChainWork);
2719
0
    }
2720
0
    return std::max(near_chaintip_work, m_chainman.MinimumChainWork());
2721
0
}
2722
2723
/**
2724
 * Special handling for unconnecting headers that might be part of a block
2725
 * announcement.
2726
 *
2727
 * We'll send a getheaders message in response to try to connect the chain.
2728
 */
2729
void PeerManagerImpl::HandleUnconnectingHeaders(CNode& pfrom, Peer& peer,
2730
        const std::vector<CBlockHeader>& headers)
2731
0
{
2732
    // Try to fill in the missing headers.
2733
0
    const CBlockIndex* best_header{WITH_LOCK(cs_main, return m_chainman.m_best_header)};
2734
0
    if (MaybeSendGetHeaders(pfrom, GetLocator(best_header), peer)) {
  Branch (2734:9): [True: 0, False: 0]
2735
0
        LogPrint(BCLog::NET, "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d)\n",
2736
0
            headers[0].GetHash().ToString(),
2737
0
            headers[0].hashPrevBlock.ToString(),
2738
0
            best_header->nHeight,
2739
0
            pfrom.GetId());
2740
0
    }
2741
2742
    // Set hashLastUnknownBlock for this peer, so that if we
2743
    // eventually get the headers - even from a different peer -
2744
    // we can use this peer to download.
2745
0
    WITH_LOCK(cs_main, UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()));
2746
0
}
2747
2748
bool PeerManagerImpl::CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const
2749
0
{
2750
0
    uint256 hashLastBlock;
2751
0
    for (const CBlockHeader& header : headers) {
  Branch (2751:37): [True: 0, False: 0]
2752
0
        if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) {
  Branch (2752:13): [True: 0, False: 0]
  Branch (2752:40): [True: 0, False: 0]
2753
0
            return false;
2754
0
        }
2755
0
        hashLastBlock = header.GetHash();
2756
0
    }
2757
0
    return true;
2758
0
}
2759
2760
bool PeerManagerImpl::IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom, std::vector<CBlockHeader>& headers)
2761
0
{
2762
0
    if (peer.m_headers_sync) {
  Branch (2762:9): [True: 0, False: 0]
2763
0
        auto result = peer.m_headers_sync->ProcessNextHeaders(headers, headers.size() == MAX_HEADERS_RESULTS);
2764
        // If it is a valid continuation, we should treat the existing getheaders request as responded to.
2765
0
        if (result.success) peer.m_last_getheaders_timestamp = {};
  Branch (2765:13): [True: 0, False: 0]
2766
0
        if (result.request_more) {
  Branch (2766:13): [True: 0, False: 0]
2767
0
            auto locator = peer.m_headers_sync->NextHeadersRequestLocator();
2768
            // If we were instructed to ask for a locator, it should not be empty.
2769
0
            Assume(!locator.vHave.empty());
2770
            // We can only be instructed to request more if processing was successful.
2771
0
            Assume(result.success);
2772
0
            if (!locator.vHave.empty()) {
  Branch (2772:17): [True: 0, False: 0]
2773
                // It should be impossible for the getheaders request to fail,
2774
                // because we just cleared the last getheaders timestamp.
2775
0
                bool sent_getheaders = MaybeSendGetHeaders(pfrom, locator, peer);
2776
0
                Assume(sent_getheaders);
2777
0
                LogPrint(BCLog::NET, "more getheaders (from %s) to peer=%d\n",
2778
0
                    locator.vHave.front().ToString(), pfrom.GetId());
2779
0
            }
2780
0
        }
2781
2782
0
        if (peer.m_headers_sync->GetState() == HeadersSyncState::State::FINAL) {
  Branch (2782:13): [True: 0, False: 0]
2783
0
            peer.m_headers_sync.reset(nullptr);
2784
2785
            // Delete this peer's entry in m_headers_presync_stats.
2786
            // If this is m_headers_presync_bestpeer, it will be replaced later
2787
            // by the next peer that triggers the else{} branch below.
2788
0
            LOCK(m_headers_presync_mutex);
2789
0
            m_headers_presync_stats.erase(pfrom.GetId());
2790
0
        } else {
2791
            // Build statistics for this peer's sync.
2792
0
            HeadersPresyncStats stats;
2793
0
            stats.first = peer.m_headers_sync->GetPresyncWork();
2794
0
            if (peer.m_headers_sync->GetState() == HeadersSyncState::State::PRESYNC) {
  Branch (2794:17): [True: 0, False: 0]
2795
0
                stats.second = {peer.m_headers_sync->GetPresyncHeight(),
2796
0
                                peer.m_headers_sync->GetPresyncTime()};
2797
0
            }
2798
2799
            // Update statistics in stats.
2800
0
            LOCK(m_headers_presync_mutex);
2801
0
            m_headers_presync_stats[pfrom.GetId()] = stats;
2802
0
            auto best_it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
2803
0
            bool best_updated = false;
2804
0
            if (best_it == m_headers_presync_stats.end()) {
  Branch (2804:17): [True: 0, False: 0]
2805
                // If the cached best peer is outdated, iterate over all remaining ones (including
2806
                // newly updated one) to find the best one.
2807
0
                NodeId peer_best{-1};
2808
0
                const HeadersPresyncStats* stat_best{nullptr};
2809
0
                for (const auto& [peer, stat] : m_headers_presync_stats) {
  Branch (2809:47): [True: 0, False: 0]
2810
0
                    if (!stat_best || stat > *stat_best) {
  Branch (2810:25): [True: 0, False: 0]
  Branch (2810:39): [True: 0, False: 0]
2811
0
                        peer_best = peer;
2812
0
                        stat_best = &stat;
2813
0
                    }
2814
0
                }
2815
0
                m_headers_presync_bestpeer = peer_best;
2816
0
                best_updated = (peer_best == pfrom.GetId());
2817
0
            } else if (best_it->first == pfrom.GetId() || stats > best_it->second) {
  Branch (2817:24): [True: 0, False: 0]
  Branch (2817:59): [True: 0, False: 0]
2818
                // pfrom was and remains the best peer, or pfrom just became best.
2819
0
                m_headers_presync_bestpeer = pfrom.GetId();
2820
0
                best_updated = true;
2821
0
            }
2822
0
            if (best_updated && stats.second.has_value()) {
  Branch (2822:17): [True: 0, False: 0]
  Branch (2822:33): [True: 0, False: 0]
2823
                // If the best peer updated, and it is in its first phase, signal.
2824
0
                m_headers_presync_should_signal = true;
2825
0
            }
2826
0
        }
2827
2828
0
        if (result.success) {
  Branch (2828:13): [True: 0, False: 0]
2829
            // We only overwrite the headers passed in if processing was
2830
            // successful.
2831
0
            headers.swap(result.pow_validated_headers);
2832
0
        }
2833
2834
0
        return result.success;
2835
0
    }
2836
    // Either we didn't have a sync in progress, or something went wrong
2837
    // processing these headers, or we are returning headers to the caller to
2838
    // process.
2839
0
    return false;
2840
0
}
2841
2842
bool PeerManagerImpl::TryLowWorkHeadersSync(Peer& peer, CNode& pfrom, const CBlockIndex* chain_start_header, std::vector<CBlockHeader>& headers)
2843
0
{
2844
    // Calculate the claimed total work on this chain.
2845
0
    arith_uint256 total_work = chain_start_header->nChainWork + CalculateClaimedHeadersWork(headers);
2846
2847
    // Our dynamic anti-DoS threshold (minimum work required on a headers chain
2848
    // before we'll store it)
2849
0
    arith_uint256 minimum_chain_work = GetAntiDoSWorkThreshold();
2850
2851
    // Avoid DoS via low-difficulty-headers by only processing if the headers
2852
    // are part of a chain with sufficient work.
2853
0
    if (total_work < minimum_chain_work) {
  Branch (2853:9): [True: 0, False: 0]
2854
        // Only try to sync with this peer if their headers message was full;
2855
        // otherwise they don't have more headers after this so no point in
2856
        // trying to sync their too-little-work chain.
2857
0
        if (headers.size() == MAX_HEADERS_RESULTS) {
  Branch (2857:13): [True: 0, False: 0]
2858
            // Note: we could advance to the last header in this set that is
2859
            // known to us, rather than starting at the first header (which we
2860
            // may already have); however this is unlikely to matter much since
2861
            // ProcessHeadersMessage() already handles the case where all
2862
            // headers in a received message are already known and are
2863
            // ancestors of m_best_header or chainActive.Tip(), by skipping
2864
            // this logic in that case. So even if the first header in this set
2865
            // of headers is known, some header in this set must be new, so
2866
            // advancing to the first unknown header would be a small effect.
2867
0
            LOCK(peer.m_headers_sync_mutex);
2868
0
            peer.m_headers_sync.reset(new HeadersSyncState(peer.m_id, m_chainparams.GetConsensus(),
2869
0
                chain_start_header, minimum_chain_work));
2870
2871
            // Now a HeadersSyncState object for tracking this synchronization
2872
            // is created, process the headers using it as normal. Failures are
2873
            // handled inside of IsContinuationOfLowWorkHeadersSync.
2874
0
            (void)IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2875
0
        } else {
2876
0
            LogPrint(BCLog::NET, "Ignoring low-work chain (height=%u) from peer=%d\n", chain_start_header->nHeight + headers.size(), pfrom.GetId());
2877
0
        }
2878
2879
        // The peer has not yet given us a chain that meets our work threshold,
2880
        // so we want to prevent further processing of the headers in any case.
2881
0
        headers = {};
2882
0
        return true;
2883
0
    }
2884
2885
0
    return false;
2886
0
}
2887
2888
bool PeerManagerImpl::IsAncestorOfBestHeaderOrTip(const CBlockIndex* header)
2889
0
{
2890
0
    if (header == nullptr) {
  Branch (2890:9): [True: 0, False: 0]
2891
0
        return false;
2892
0
    } else if (m_chainman.m_best_header != nullptr && header == m_chainman.m_best_header->GetAncestor(header->nHeight)) {
  Branch (2892:16): [True: 0, False: 0]
  Branch (2892:55): [True: 0, False: 0]
2893
0
        return true;
2894
0
    } else if (m_chainman.ActiveChain().Contains(header)) {
  Branch (2894:16): [True: 0, False: 0]
2895
0
        return true;
2896
0
    }
2897
0
    return false;
2898
0
}
2899
2900
bool PeerManagerImpl::MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer)
2901
85
{
2902
85
    const auto current_time = NodeClock::now();
2903
2904
    // Only allow a new getheaders message to go out if we don't have a recent
2905
    // one already in-flight
2906
85
    if (current_time - peer.m_last_getheaders_timestamp > HEADERS_RESPONSE_TIME) {
  Branch (2906:9): [True: 85, False: 0]
2907
85
        MakeAndPushMessage(pfrom, NetMsgType::GETHEADERS, locator, uint256());
2908
85
        peer.m_last_getheaders_timestamp = current_time;
2909
85
        return true;
2910
85
    }
2911
0
    return false;
2912
85
}
2913
2914
/*
2915
 * Given a new headers tip ending in last_header, potentially request blocks towards that tip.
2916
 * We require that the given tip have at least as much work as our tip, and for
2917
 * our current tip to be "close to synced" (see CanDirectFetch()).
2918
 */
2919
void PeerManagerImpl::HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header)
2920
0
{
2921
0
    LOCK(cs_main);
2922
0
    CNodeState *nodestate = State(pfrom.GetId());
2923
2924
0
    if (CanDirectFetch() && last_header.IsValid(BLOCK_VALID_TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= last_header.nChainWork) {
  Branch (2924:9): [True: 0, False: 0]
  Branch (2924:29): [True: 0, False: 0]
  Branch (2924:70): [True: 0, False: 0]
2925
0
        std::vector<const CBlockIndex*> vToFetch;
2926
0
        const CBlockIndex* pindexWalk{&last_header};
2927
        // Calculate all the blocks we'd need to switch to last_header, up to a limit.
2928
0
        while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
  Branch (2928:16): [True: 0, False: 0]
  Branch (2928:30): [True: 0, False: 0]
  Branch (2928:80): [True: 0, False: 0]
2929
0
            if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
  Branch (2929:17): [True: 0, False: 0]
  Branch (2929:17): [True: 0, False: 0]
2930
0
                    !IsBlockRequested(pindexWalk->GetBlockHash()) &&
  Branch (2930:21): [True: 0, False: 0]
2931
0
                    (!DeploymentActiveAt(*pindexWalk, m_chainman, Consensus::DEPLOYMENT_SEGWIT) || CanServeWitnesses(peer))) {
  Branch (2931:22): [True: 0, False: 0]
  Branch (2931:100): [True: 0, False: 0]
2932
                // We don't have this block, and it's not yet in flight.
2933
0
                vToFetch.push_back(pindexWalk);
2934
0
            }
2935
0
            pindexWalk = pindexWalk->pprev;
2936
0
        }
2937
        // If pindexWalk still isn't on our main chain, we're looking at a
2938
        // very large reorg at a time we think we're close to caught up to
2939
        // the main chain -- this shouldn't really happen.  Bail out on the
2940
        // direct fetch and rely on parallel download instead.
2941
0
        if (!m_chainman.ActiveChain().Contains(pindexWalk)) {
  Branch (2941:13): [True: 0, False: 0]
2942
0
            LogPrint(BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
2943
0
                     last_header.GetBlockHash().ToString(),
2944
0
                     last_header.nHeight);
2945
0
        } else {
2946
0
            std::vector<CInv> vGetData;
2947
            // Download as much as possible, from earliest to latest.
2948
0
            for (const CBlockIndex *pindex : reverse_iterate(vToFetch)) {
  Branch (2948:44): [True: 0, False: 0]
2949
0
                if (nodestate->vBlocksInFlight.size() >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
  Branch (2949:21): [True: 0, False: 0]
2950
                    // Can't download any more from this peer
2951
0
                    break;
2952
0
                }
2953
0
                uint32_t nFetchFlags = GetFetchFlags(peer);
2954
0
                vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
2955
0
                BlockRequested(pfrom.GetId(), *pindex);
2956
0
                LogPrint(BCLog::NET, "Requesting block %s from  peer=%d\n",
2957
0
                        pindex->GetBlockHash().ToString(), pfrom.GetId());
2958
0
            }
2959
0
            if (vGetData.size() > 1) {
  Branch (2959:17): [True: 0, False: 0]
2960
0
                LogPrint(BCLog::NET, "Downloading blocks toward %s (%d) via headers direct fetch\n",
2961
0
                         last_header.GetBlockHash().ToString(),
2962
0
                         last_header.nHeight);
2963
0
            }
2964
0
            if (vGetData.size() > 0) {
  Branch (2964:17): [True: 0, False: 0]
2965
0
                if (!m_opts.ignore_incoming_txs &&
  Branch (2965:21): [True: 0, False: 0]
2966
0
                        nodestate->m_provides_cmpctblocks &&
  Branch (2966:25): [True: 0, False: 0]
2967
0
                        vGetData.size() == 1 &&
  Branch (2967:25): [True: 0, False: 0]
2968
0
                        mapBlocksInFlight.size() == 1 &&
  Branch (2968:25): [True: 0, False: 0]
2969
0
                        last_header.pprev->IsValid(BLOCK_VALID_CHAIN)) {
  Branch (2969:25): [True: 0, False: 0]
2970
                    // In any case, we want to download using a compact block, not a regular one
2971
0
                    vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
2972
0
                }
2973
0
                MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vGetData);
2974
0
            }
2975
0
        }
2976
0
    }
2977
0
}
2978
2979
/**
2980
 * Given receipt of headers from a peer ending in last_header, along with
2981
 * whether that header was new and whether the headers message was full,
2982
 * update the state we keep for the peer.
2983
 */
2984
void PeerManagerImpl::UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer,
2985
        const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
2986
0
{
2987
0
    LOCK(cs_main);
2988
0
    CNodeState *nodestate = State(pfrom.GetId());
2989
2990
0
    UpdateBlockAvailability(pfrom.GetId(), last_header.GetBlockHash());
2991
2992
    // From here, pindexBestKnownBlock should be guaranteed to be non-null,
2993
    // because it is set in UpdateBlockAvailability. Some nullptr checks
2994
    // are still present, however, as belt-and-suspenders.
2995
2996
0
    if (received_new_header && last_header.nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
  Branch (2996:9): [True: 0, False: 0]
  Branch (2996:32): [True: 0, False: 0]
2997
0
        nodestate->m_last_block_announcement = GetTime();
2998
0
    }
2999
3000
    // If we're in IBD, we want outbound peers that will serve us a useful
3001
    // chain. Disconnect peers that are on chains with insufficient work.
3002
0
    if (m_chainman.IsInitialBlockDownload() && !may_have_more_headers) {
  Branch (3002:9): [True: 0, False: 0]
  Branch (3002:48): [True: 0, False: 0]
3003
        // If the peer has no more headers to give us, then we know we have
3004
        // their tip.
3005
0
        if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
  Branch (3005:13): [True: 0, False: 0]
  Branch (3005:48): [True: 0, False: 0]
3006
            // This peer has too little work on their headers chain to help
3007
            // us sync -- disconnect if it is an outbound disconnection
3008
            // candidate.
3009
            // Note: We compare their tip to the minimum chain work (rather than
3010
            // m_chainman.ActiveChain().Tip()) because we won't start block download
3011
            // until we have a headers chain that has at least
3012
            // the minimum chain work, even if a peer has a chain past our tip,
3013
            // as an anti-DoS measure.
3014
0
            if (pfrom.IsOutboundOrBlockRelayConn()) {
  Branch (3014:17): [True: 0, False: 0]
3015
0
                LogPrintf("Disconnecting outbound peer %d -- headers chain has insufficient work\n", pfrom.GetId());
3016
0
                pfrom.fDisconnect = true;
3017
0
            }
3018
0
        }
3019
0
    }
3020
3021
    // If this is an outbound full-relay peer, check to see if we should protect
3022
    // it from the bad/lagging chain logic.
3023
    // Note that outbound block-relay peers are excluded from this protection, and
3024
    // thus always subject to eviction under the bad/lagging chain logic.
3025
    // See ChainSyncTimeoutState.
3026
0
    if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) {
  Branch (3026:9): [True: 0, False: 0]
  Branch (3026:31): [True: 0, False: 0]
  Branch (3026:61): [True: 0, False: 0]
3027
0
        if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) {
  Branch (3027:13): [True: 0, False: 0]
  Branch (3027:110): [True: 0, False: 0]
  Branch (3027:203): [True: 0, False: 0]
3028
0
            LogPrint(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId());
3029
0
            nodestate->m_chain_sync.m_protect = true;
3030
0
            ++m_outbound_peers_with_protect_from_disconnect;
3031
0
        }
3032
0
    }
3033
0
}
3034
3035
void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
3036
                                            std::vector<CBlockHeader>&& headers,
3037
                                            bool via_compact_block)
3038
0
{
3039
0
    size_t nCount = headers.size();
3040
3041
0
    if (nCount == 0) {
  Branch (3041:9): [True: 0, False: 0]
3042
        // Nothing interesting. Stop asking this peers for more headers.
3043
        // If we were in the middle of headers sync, receiving an empty headers
3044
        // message suggests that the peer suddenly has nothing to give us
3045
        // (perhaps it reorged to our chain). Clear download state for this peer.
3046
0
        LOCK(peer.m_headers_sync_mutex);
3047
0
        if (peer.m_headers_sync) {
  Branch (3047:13): [True: 0, False: 0]
3048
0
            peer.m_headers_sync.reset(nullptr);
3049
0
            LOCK(m_headers_presync_mutex);
3050
0
            m_headers_presync_stats.erase(pfrom.GetId());
3051
0
        }
3052
        // A headers message with no headers cannot be an announcement, so assume
3053
        // it is a response to our last getheaders request, if there is one.
3054
0
        peer.m_last_getheaders_timestamp = {};
3055
0
        return;
3056
0
    }
3057
3058
    // Before we do any processing, make sure these pass basic sanity checks.
3059
    // We'll rely on headers having valid proof-of-work further down, as an
3060
    // anti-DoS criteria (note: this check is required before passing any
3061
    // headers into HeadersSyncState).
3062
0
    if (!CheckHeadersPoW(headers, m_chainparams.GetConsensus(), peer)) {
  Branch (3062:9): [True: 0, False: 0]
3063
        // Misbehaving() calls are handled within CheckHeadersPoW(), so we can
3064
        // just return. (Note that even if a header is announced via compact
3065
        // block, the header itself should be valid, so this type of error can
3066
        // always be punished.)
3067
0
        return;
3068
0
    }
3069
3070
0
    const CBlockIndex *pindexLast = nullptr;
3071
3072
    // We'll set already_validated_work to true if these headers are
3073
    // successfully processed as part of a low-work headers sync in progress
3074
    // (either in PRESYNC or REDOWNLOAD phase).
3075
    // If true, this will mean that any headers returned to us (ie during
3076
    // REDOWNLOAD) can be validated without further anti-DoS checks.
3077
0
    bool already_validated_work = false;
3078
3079
    // If we're in the middle of headers sync, let it do its magic.
3080
0
    bool have_headers_sync = false;
3081
0
    {
3082
0
        LOCK(peer.m_headers_sync_mutex);
3083
3084
0
        already_validated_work = IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
3085
3086
        // The headers we passed in may have been:
3087
        // - untouched, perhaps if no headers-sync was in progress, or some
3088
        //   failure occurred
3089
        // - erased, such as if the headers were successfully processed and no
3090
        //   additional headers processing needs to take place (such as if we
3091
        //   are still in PRESYNC)
3092
        // - replaced with headers that are now ready for validation, such as
3093
        //   during the REDOWNLOAD phase of a low-work headers sync.
3094
        // So just check whether we still have headers that we need to process,
3095
        // or not.
3096
0
        if (headers.empty()) {
  Branch (3096:13): [True: 0, False: 0]
3097
0
            return;
3098
0
        }
3099
3100
0
        have_headers_sync = !!peer.m_headers_sync;
3101
0
    }
3102
3103
    // Do these headers connect to something in our block index?
3104
0
    const CBlockIndex *chain_start_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock))};
3105
0
    bool headers_connect_blockindex{chain_start_header != nullptr};
3106
3107
0
    if (!headers_connect_blockindex) {
  Branch (3107:9): [True: 0, False: 0]
3108
        // This could be a BIP 130 block announcement, use
3109
        // special logic for handling headers that don't connect, as this
3110
        // could be benign.
3111
0
        HandleUnconnectingHeaders(pfrom, peer, headers);
3112
0
        return;
3113
0
    }
3114
3115
    // If headers connect, assume that this is in response to any outstanding getheaders
3116
    // request we may have sent, and clear out the time of our last request. Non-connecting
3117
    // headers cannot be a response to a getheaders request.
3118
0
    peer.m_last_getheaders_timestamp = {};
3119
3120
    // If the headers we received are already in memory and an ancestor of
3121
    // m_best_header or our tip, skip anti-DoS checks. These headers will not
3122
    // use any more memory (and we are not leaking information that could be
3123
    // used to fingerprint us).
3124
0
    const CBlockIndex *last_received_header{nullptr};
3125
0
    {
3126
0
        LOCK(cs_main);
3127
0
        last_received_header = m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash());
3128
0
        if (IsAncestorOfBestHeaderOrTip(last_received_header)) {
  Branch (3128:13): [True: 0, False: 0]
3129
0
            already_validated_work = true;
3130
0
        }
3131
0
    }
3132
3133
    // If our peer has NetPermissionFlags::NoBan privileges, then bypass our
3134
    // anti-DoS logic (this saves bandwidth when we connect to a trusted peer
3135
    // on startup).
3136
0
    if (pfrom.HasPermission(NetPermissionFlags::NoBan)) {
  Branch (3136:9): [True: 0, False: 0]
3137
0
        already_validated_work = true;
3138
0
    }
3139
3140
    // At this point, the headers connect to something in our block index.
3141
    // Do anti-DoS checks to determine if we should process or store for later
3142
    // processing.
3143
0
    if (!already_validated_work && TryLowWorkHeadersSync(peer, pfrom,
  Branch (3143:9): [True: 0, False: 0]
  Branch (3143:36): [True: 0, False: 0]
3144
0
                chain_start_header, headers)) {
3145
        // If we successfully started a low-work headers sync, then there
3146
        // should be no headers to process any further.
3147
0
        Assume(headers.empty());
3148
0
        return;
3149
0
    }
3150
3151
    // At this point, we have a set of headers with sufficient work on them
3152
    // which can be processed.
3153
3154
    // If we don't have the last header, then this peer will have given us
3155
    // something new (if these headers are valid).
3156
0
    bool received_new_header{last_received_header == nullptr};
3157
3158
    // Now process all the headers.
3159
0
    BlockValidationState state;
3160
0
    if (!m_chainman.ProcessNewBlockHeaders(headers, /*min_pow_checked=*/true, state, &pindexLast)) {
  Branch (3160:9): [True: 0, False: 0]
3161
0
        if (state.IsInvalid()) {
  Branch (3161:13): [True: 0, False: 0]
3162
0
            MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received");
3163
0
            return;
3164
0
        }
3165
0
    }
3166
0
    assert(pindexLast);
3167
3168
    // Consider fetching more headers if we are not using our headers-sync mechanism.
3169
0
    if (nCount == MAX_HEADERS_RESULTS && !have_headers_sync) {
  Branch (3169:9): [True: 0, False: 0]
  Branch (3169:42): [True: 0, False: 0]
3170
        // Headers message had its maximum size; the peer may have more headers.
3171
0
        if (MaybeSendGetHeaders(pfrom, GetLocator(pindexLast), peer)) {
  Branch (3171:13): [True: 0, False: 0]
3172
0
            LogPrint(BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n",
3173
0
                    pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height);
3174
0
        }
3175
0
    }
3176
3177
0
    UpdatePeerStateForReceivedHeaders(pfrom, peer, *pindexLast, received_new_header, nCount == MAX_HEADERS_RESULTS);
3178
3179
    // Consider immediately downloading blocks.
3180
0
    HeadersDirectFetchBlocks(pfrom, peer, *pindexLast);
3181
3182
0
    return;
3183
0
}
3184
3185
void PeerManagerImpl::ProcessInvalidTx(NodeId nodeid, const CTransactionRef& ptx, const TxValidationState& state,
3186
                                       bool maybe_add_extra_compact_tx)
3187
0
{
3188
0
    AssertLockNotHeld(m_peer_mutex);
3189
0
    AssertLockHeld(g_msgproc_mutex);
3190
0
    AssertLockHeld(cs_main);
3191
3192
0
    LogDebug(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
3193
0
        ptx->GetHash().ToString(),
3194
0
        ptx->GetWitnessHash().ToString(),
3195
0
        nodeid,
3196
0
        state.ToString());
3197
3198
0
    if (state.GetResult() == TxValidationResult::TX_MISSING_INPUTS) {
  Branch (3198:9): [True: 0, False: 0]
3199
0
        return;
3200
0
    } else if (state.GetResult() != TxValidationResult::TX_WITNESS_STRIPPED) {
  Branch (3200:16): [True: 0, False: 0]
3201
        // We can add the wtxid of this transaction to our reject filter.
3202
        // Do not add txids of witness transactions or witness-stripped
3203
        // transactions to the filter, as they can have been malleated;
3204
        // adding such txids to the reject filter would potentially
3205
        // interfere with relay of valid transactions from peers that
3206
        // do not support wtxid-based relay. See
3207
        // https://github.com/bitcoin/bitcoin/issues/8279 for details.
3208
        // We can remove this restriction (and always add wtxids to
3209
        // the filter even for witness stripped transactions) once
3210
        // wtxid-based relay is broadly deployed.
3211
        // See also comments in https://github.com/bitcoin/bitcoin/pull/18044#discussion_r443419034
3212
        // for concerns around weakening security of unupgraded nodes
3213
        // if we start doing this too early.
3214
0
        if (state.GetResult() == TxValidationResult::TX_RECONSIDERABLE) {
  Branch (3214:13): [True: 0, False: 0]
3215
            // If the result is TX_RECONSIDERABLE, add it to m_recent_rejects_reconsiderable
3216
            // because we should not download or submit this transaction by itself again, but may
3217
            // submit it as part of a package later.
3218
0
            RecentRejectsReconsiderableFilter().insert(ptx->GetWitnessHash().ToUint256());
3219
0
        } else {
3220
0
            RecentRejectsFilter().insert(ptx->GetWitnessHash().ToUint256());
3221
0
        }
3222
0
        m_txrequest.ForgetTxHash(ptx->GetWitnessHash());
3223
        // If the transaction failed for TX_INPUTS_NOT_STANDARD,
3224
        // then we know that the witness was irrelevant to the policy
3225
        // failure, since this check depends only on the txid
3226
        // (the scriptPubKey being spent is covered by the txid).
3227
        // Add the txid to the reject filter to prevent repeated
3228
        // processing of this transaction in the event that child
3229
        // transactions are later received (resulting in
3230
        // parent-fetching by txid via the orphan-handling logic).
3231
        // We only add the txid if it differs from the wtxid, to avoid wasting entries in the
3232
        // rolling bloom filter.
3233
0
        if (state.GetResult() == TxValidationResult::TX_INPUTS_NOT_STANDARD && ptx->HasWitness()) {
  Branch (3233:13): [True: 0, False: 0]
  Branch (3233:80): [True: 0, False: 0]
3234
0
            RecentRejectsFilter().insert(ptx->GetHash().ToUint256());
3235
0
            m_txrequest.ForgetTxHash(ptx->GetHash());
3236
0
        }
3237
0
        if (maybe_add_extra_compact_tx && RecursiveDynamicUsage(*ptx) < 100000) {
  Branch (3237:13): [True: 0, False: 0]
  Branch (3237:43): [True: 0, False: 0]
3238
0
            AddToCompactExtraTransactions(ptx);
3239
0
        }
3240
0
    }
3241
3242
0
    MaybePunishNodeForTx(nodeid, state);
3243
3244
    // If the tx failed in ProcessOrphanTx, it should be removed from the orphanage unless the
3245
    // tx was still missing inputs. If the tx was not in the orphanage, EraseTx does nothing and returns 0.
3246
0
    if (Assume(state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) && m_orphanage.EraseTx(ptx->GetWitnessHash()) > 0) {
  Branch (3246:9): [True: 0, False: 0]
  Branch (3246:79): [True: 0, False: 0]
3247
0
        LogDebug(BCLog::TXPACKAGES, "   removed orphan tx %s (wtxid=%s)\n", ptx->GetHash().ToString(), ptx->GetWitnessHash().ToString());
3248
0
    }
3249
0
}
3250
3251
void PeerManagerImpl::ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
3252
0
{
3253
0
    AssertLockNotHeld(m_peer_mutex);
3254
0
    AssertLockHeld(g_msgproc_mutex);
3255
0
    AssertLockHeld(cs_main);
3256
3257
    // As this version of the transaction was acceptable, we can forget about any requests for it.
3258
    // No-op if the tx is not in txrequest.
3259
0
    m_txrequest.ForgetTxHash(tx->GetHash());
3260
0
    m_txrequest.ForgetTxHash(tx->GetWitnessHash());
3261
3262
0
    m_orphanage.AddChildrenToWorkSet(*tx);
3263
    // If it came from the orphanage, remove it. No-op if the tx is not in txorphanage.
3264
0
    m_orphanage.EraseTx(tx->GetWitnessHash());
3265
3266
0
    LogDebug(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
3267
0
             nodeid,
3268
0
             tx->GetHash().ToString(),
3269
0
             tx->GetWitnessHash().ToString(),
3270
0
             m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
3271
3272
0
    RelayTransaction(tx->GetHash(), tx->GetWitnessHash());
3273
3274
0
    for (const CTransactionRef& removedTx : replaced_transactions) {
  Branch (3274:43): [True: 0, False: 0]
3275
0
        AddToCompactExtraTransactions(removedTx);
3276
0
    }
3277
0
}
3278
3279
void PeerManagerImpl::ProcessPackageResult(const PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
3280
0
{
3281
0
    AssertLockNotHeld(m_peer_mutex);
3282
0
    AssertLockHeld(g_msgproc_mutex);
3283
0
    AssertLockHeld(cs_main);
3284
3285
0
    const auto& package = package_to_validate.m_txns;
3286
0
    const auto& senders = package_to_validate.m_senders;
3287
3288
0
    if (package_result.m_state.IsInvalid()) {
  Branch (3288:9): [True: 0, False: 0]
3289
0
        RecentRejectsReconsiderableFilter().insert(GetPackageHash(package));
3290
0
    }
3291
    // We currently only expect to process 1-parent-1-child packages. Remove if this changes.
3292
0
    if (!Assume(package.size() == 2)) return;
  Branch (3292:9): [True: 0, False: 0]
3293
3294
    // Iterate backwards to erase in-package descendants from the orphanage before they become
3295
    // relevant in AddChildrenToWorkSet.
3296
0
    auto package_iter = package.rbegin();
3297
0
    auto senders_iter = senders.rbegin();
3298
0
    while (package_iter != package.rend()) {
  Branch (3298:12): [True: 0, False: 0]
3299
0
        const auto& tx = *package_iter;
3300
0
        const NodeId nodeid = *senders_iter;
3301
0
        const auto it_result{package_result.m_tx_results.find(tx->GetWitnessHash())};
3302
3303
        // It is not guaranteed that a result exists for every transaction.
3304
0
        if (it_result != package_result.m_tx_results.end()) {
  Branch (3304:13): [True: 0, False: 0]
3305
0
            const auto& tx_result = it_result->second;
3306
0
            switch (tx_result.m_result_type) {
  Branch (3306:21): [True: 0, False: 0]
3307
0
                case MempoolAcceptResult::ResultType::VALID:
  Branch (3307:17): [True: 0, False: 0]
3308
0
                {
3309
0
                    ProcessValidTx(nodeid, tx, tx_result.m_replaced_transactions);
3310
0
                    break;
3311
0
                }
3312
0
                case MempoolAcceptResult::ResultType::INVALID:
  Branch (3312:17): [True: 0, False: 0]
3313
0
                case MempoolAcceptResult::ResultType::DIFFERENT_WITNESS:
  Branch (3313:17): [True: 0, False: 0]
3314
0
                {
3315
                    // Don't add to vExtraTxnForCompact, as these transactions should have already been
3316
                    // added there when added to the orphanage or rejected for TX_RECONSIDERABLE.
3317
                    // This should be updated if package submission is ever used for transactions
3318
                    // that haven't already been validated before.
3319
0
                    ProcessInvalidTx(nodeid, tx, tx_result.m_state, /*maybe_add_extra_compact_tx=*/false);
3320
0
                    break;
3321
0
                }
3322
0
                case MempoolAcceptResult::ResultType::MEMPOOL_ENTRY:
  Branch (3322:17): [True: 0, False: 0]
3323
0
                {
3324
                    // AlreadyHaveTx() should be catching transactions that are already in mempool.
3325
0
                    Assume(false);
3326
0
                    break;
3327
0
                }
3328
0
            }
3329
0
        }
3330
0
        package_iter++;
3331
0
        senders_iter++;
3332
0
    }
3333
0
}
3334
3335
std::optional<PeerManagerImpl::PackageToValidate> PeerManagerImpl::Find1P1CPackage(const CTransactionRef& ptx, NodeId nodeid)
3336
0
{
3337
0
    AssertLockNotHeld(m_peer_mutex);
3338
0
    AssertLockHeld(g_msgproc_mutex);
3339
0
    AssertLockHeld(cs_main);
3340
3341
0
    const auto& parent_wtxid{ptx->GetWitnessHash()};
3342
3343
0
    Assume(RecentRejectsReconsiderableFilter().contains(parent_wtxid.ToUint256()));
3344
3345
    // Prefer children from this peer. This helps prevent censorship attempts in which an attacker
3346
    // sends lots of fake children for the parent, and we (unluckily) keep selecting the fake
3347
    // children instead of the real one provided by the honest peer.
3348
0
    const auto cpfp_candidates_same_peer{m_orphanage.GetChildrenFromSamePeer(ptx, nodeid)};
3349
3350
    // These children should be sorted from newest to oldest. In the (probably uncommon) case
3351
    // of children that replace each other, this helps us accept the highest feerate (probably the
3352
    // most recent) one efficiently.
3353
0
    for (const auto& child : cpfp_candidates_same_peer) {
  Branch (3353:28): [True: 0, False: 0]
3354
0
        Package maybe_cpfp_package{ptx, child};
3355
0
        if (!RecentRejectsReconsiderableFilter().contains(GetPackageHash(maybe_cpfp_package))) {
  Branch (3355:13): [True: 0, False: 0]
3356
0
            return PeerManagerImpl::PackageToValidate{ptx, child, nodeid, nodeid};
3357
0
        }
3358
0
    }
3359
3360
    // If no suitable candidate from the same peer is found, also try children that were provided by
3361
    // a different peer. This is useful because sometimes multiple peers announce both transactions
3362
    // to us, and we happen to download them from different peers (we wouldn't have known that these
3363
    // 2 transactions are related). We still want to find 1p1c packages then.
3364
    //
3365
    // If we start tracking all announcers of orphans, we can restrict this logic to parent + child
3366
    // pairs in which both were provided by the same peer, i.e. delete this step.
3367
0
    const auto cpfp_candidates_different_peer{m_orphanage.GetChildrenFromDifferentPeer(ptx, nodeid)};
3368
3369
    // Find the first 1p1c that hasn't already been rejected. We randomize the order to not
3370
    // create a bias that attackers can use to delay package acceptance.
3371
    //
3372
    // Create a random permutation of the indices.
3373
0
    std::vector<size_t> tx_indices(cpfp_candidates_different_peer.size());
3374
0
    std::iota(tx_indices.begin(), tx_indices.end(), 0);
3375
0
    Shuffle(tx_indices.begin(), tx_indices.end(), m_rng);
3376
3377
0
    for (const auto index : tx_indices) {
  Branch (3377:27): [True: 0, False: 0]
3378
        // If we already tried a package and failed for any reason, the combined hash was
3379
        // cached in RecentRejectsReconsiderableFilter().
3380
0
        const auto [child_tx, child_sender] = cpfp_candidates_different_peer.at(index);
3381
0
        Package maybe_cpfp_package{ptx, child_tx};
3382
0
        if (!RecentRejectsReconsiderableFilter().contains(GetPackageHash(maybe_cpfp_package))) {
  Branch (3382:13): [True: 0, False: 0]
3383
0
            return PeerManagerImpl::PackageToValidate{ptx, child_tx, nodeid, child_sender};
3384
0
        }
3385
0
    }
3386
0
    return std::nullopt;
3387
0
}
3388
3389
bool PeerManagerImpl::ProcessOrphanTx(Peer& peer)
3390
5.64k
{
3391
5.64k
    AssertLockHeld(g_msgproc_mutex);
3392
5.64k
    LOCK(cs_main);
3393
3394
5.64k
    CTransactionRef porphanTx = nullptr;
3395
3396
5.64k
    while (CTransactionRef porphanTx = m_orphanage.GetTxToReconsider(peer.m_id)) {
  Branch (3396:28): [True: 0, False: 5.64k]
3397
0
        const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx);
3398
0
        const TxValidationState& state = result.m_state;
3399
0
        const Txid& orphanHash = porphanTx->GetHash();
3400
0
        const Wtxid& orphan_wtxid = porphanTx->GetWitnessHash();
3401
3402
0
        if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) {
  Branch (3402:13): [True: 0, False: 0]
3403
0
            LogPrint(BCLog::TXPACKAGES, "   accepted orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
3404
0
            ProcessValidTx(peer.m_id, porphanTx, result.m_replaced_transactions);
3405
0
            return true;
3406
0
        } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) {
  Branch (3406:20): [True: 0, False: 0]
3407
0
            LogPrint(BCLog::TXPACKAGES, "   invalid orphan tx %s (wtxid=%s) from peer=%d. %s\n",
3408
0
                orphanHash.ToString(),
3409
0
                orphan_wtxid.ToString(),
3410
0
                peer.m_id,
3411
0
                state.ToString());
3412
3413
0
            if (Assume(state.IsInvalid() &&
3414
0
                       state.GetResult() != TxValidationResult::TX_UNKNOWN &&
3415
0
                       state.GetResult() != TxValidationResult::TX_NO_MEMPOOL &&
3416
0
                       state.GetResult() != TxValidationResult::TX_RESULT_UNSET)) {
3417
0
                ProcessInvalidTx(peer.m_id, porphanTx, state, /*maybe_add_extra_compact_tx=*/false);
3418
0
            }
3419
0
            return true;
3420
0
        }
3421
0
    }
3422
3423
5.64k
    return false;
3424
5.64k
}
3425
3426
bool PeerManagerImpl::PrepareBlockFilterRequest(CNode& node, Peer& peer,
3427
                                                BlockFilterType filter_type, uint32_t start_height,
3428
                                                const uint256& stop_hash, uint32_t max_height_diff,
3429
                                                const CBlockIndex*& stop_index,
3430
                                                BlockFilterIndex*& filter_index)
3431
0
{
3432
0
    const bool supported_filter_type =
3433
0
        (filter_type == BlockFilterType::BASIC &&
  Branch (3433:10): [True: 0, False: 0]
3434
0
         (peer.m_our_services & NODE_COMPACT_FILTERS));
  Branch (3434:10): [True: 0, False: 0]
3435
0
    if (!supported_filter_type) {
  Branch (3435:9): [True: 0, False: 0]
3436
0
        LogPrint(BCLog::NET, "peer %d requested unsupported block filter type: %d\n",
3437
0
                 node.GetId(), static_cast<uint8_t>(filter_type));
3438
0
        node.fDisconnect = true;
3439
0
        return false;
3440
0
    }
3441
3442
0
    {
3443
0
        LOCK(cs_main);
3444
0
        stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash);
3445
3446
        // Check that the stop block exists and the peer would be allowed to fetch it.
3447
0
        if (!stop_index || !BlockRequestAllowed(stop_index)) {
  Branch (3447:13): [True: 0, False: 0]
  Branch (3447:28): [True: 0, False: 0]
3448
0
            LogPrint(BCLog::NET, "peer %d requested invalid block hash: %s\n",
3449
0
                     node.GetId(), stop_hash.ToString());
3450
0
            node.fDisconnect = true;
3451
0
            return false;
3452
0
        }
3453
0
    }
3454
3455
0
    uint32_t stop_height = stop_index->nHeight;
3456
0
    if (start_height > stop_height) {
  Branch (3456:9): [True: 0, False: 0]
3457
0
        LogPrint(BCLog::NET, "peer %d sent invalid getcfilters/getcfheaders with "
3458
0
                 "start height %d and stop height %d\n",
3459
0
                 node.GetId(), start_height, stop_height);
3460
0
        node.fDisconnect = true;
3461
0
        return false;
3462
0
    }
3463
0
    if (stop_height - start_height >= max_height_diff) {
  Branch (3463:9): [True: 0, False: 0]
3464
0
        LogPrint(BCLog::NET, "peer %d requested too many cfilters/cfheaders: %d / %d\n",
3465
0
                 node.GetId(), stop_height - start_height + 1, max_height_diff);
3466
0
        node.fDisconnect = true;
3467
0
        return false;
3468
0
    }
3469
3470
0
    filter_index = GetBlockFilterIndex(filter_type);
3471
0
    if (!filter_index) {
  Branch (3471:9): [True: 0, False: 0]
3472
0
        LogPrint(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type));
3473
0
        return false;
3474
0
    }
3475
3476
0
    return true;
3477
0
}
3478
3479
void PeerManagerImpl::ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv)
3480
0
{
3481
0
    uint8_t filter_type_ser;
3482
0
    uint32_t start_height;
3483
0
    uint256 stop_hash;
3484
3485
0
    vRecv >> filter_type_ser >> start_height >> stop_hash;
3486
3487
0
    const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3488
3489
0
    const CBlockIndex* stop_index;
3490
0
    BlockFilterIndex* filter_index;
3491
0
    if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
  Branch (3491:9): [True: 0, False: 0]
3492
0
                                   MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
3493
0
        return;
3494
0
    }
3495
3496
0
    std::vector<BlockFilter> filters;
3497
0
    if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
  Branch (3497:9): [True: 0, False: 0]
3498
0
        LogPrint(BCLog::NET, "Failed to find block filter in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3499
0
                     BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3500
0
        return;
3501
0
    }
3502
3503
0
    for (const auto& filter : filters) {
  Branch (3503:29): [True: 0, False: 0]
3504
0
        MakeAndPushMessage(node, NetMsgType::CFILTER, filter);
3505
0
    }
3506
0
}
3507
3508
void PeerManagerImpl::ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv)
3509
0
{
3510
0
    uint8_t filter_type_ser;
3511
0
    uint32_t start_height;
3512
0
    uint256 stop_hash;
3513
3514
0
    vRecv >> filter_type_ser >> start_height >> stop_hash;
3515
3516
0
    const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3517
3518
0
    const CBlockIndex* stop_index;
3519
0
    BlockFilterIndex* filter_index;
3520
0
    if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
  Branch (3520:9): [True: 0, False: 0]
3521
0
                                   MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
3522
0
        return;
3523
0
    }
3524
3525
0
    uint256 prev_header;
3526
0
    if (start_height > 0) {
  Branch (3526:9): [True: 0, False: 0]
3527
0
        const CBlockIndex* const prev_block =
3528
0
            stop_index->GetAncestor(static_cast<int>(start_height - 1));
3529
0
        if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
  Branch (3529:13): [True: 0, False: 0]
3530
0
            LogPrint(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3531
0
                         BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString());
3532
0
            return;
3533
0
        }
3534
0
    }
3535
3536
0
    std::vector<uint256> filter_hashes;
3537
0
    if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) {
  Branch (3537:9): [True: 0, False: 0]
3538
0
        LogPrint(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3539
0
                     BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3540
0
        return;
3541
0
    }
3542
3543
0
    MakeAndPushMessage(node, NetMsgType::CFHEADERS,
3544
0
              filter_type_ser,
3545
0
              stop_index->GetBlockHash(),
3546
0
              prev_header,
3547
0
              filter_hashes);
3548
0
}
3549
3550
void PeerManagerImpl::ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv)
3551
0
{
3552
0
    uint8_t filter_type_ser;
3553
0
    uint256 stop_hash;
3554
3555
0
    vRecv >> filter_type_ser >> stop_hash;
3556
3557
0
    const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3558
3559
0
    const CBlockIndex* stop_index;
3560
0
    BlockFilterIndex* filter_index;
3561
0
    if (!PrepareBlockFilterRequest(node, peer, filter_type, /*start_height=*/0, stop_hash,
  Branch (3561:9): [True: 0, False: 0]
3562
0
                                   /*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
3563
0
                                   stop_index, filter_index)) {
3564
0
        return;
3565
0
    }
3566
3567
0
    std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
3568
3569
    // Populate headers.
3570
0
    const CBlockIndex* block_index = stop_index;
3571
0
    for (int i = headers.size() - 1; i >= 0; i--) {
  Branch (3571:38): [True: 0, False: 0]
3572
0
        int height = (i + 1) * CFCHECKPT_INTERVAL;
3573
0
        block_index = block_index->GetAncestor(height);
3574
3575
0
        if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
  Branch (3575:13): [True: 0, False: 0]
3576
0
            LogPrint(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3577
0
                         BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString());
3578
0
            return;
3579
0
        }
3580
0
    }
3581
3582
0
    MakeAndPushMessage(node, NetMsgType::CFCHECKPT,
3583
0
              filter_type_ser,
3584
0
              stop_index->GetBlockHash(),
3585
0
              headers);
3586
0
}
3587
3588
void PeerManagerImpl::ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked)
3589
0
{
3590
0
    bool new_block{false};
3591
0
    m_chainman.ProcessNewBlock(block, force_processing, min_pow_checked, &new_block);
3592
0
    if (new_block) {
  Branch (3592:9): [True: 0, False: 0]
3593
0
        node.m_last_block_time = GetTime<std::chrono::seconds>();
3594
        // In case this block came from a different peer than we requested
3595
        // from, we can erase the block request now anyway (as we just stored
3596
        // this block to disk).
3597
0
        LOCK(cs_main);
3598
0
        RemoveBlockRequest(block->GetHash(), std::nullopt);
3599
0
    } else {
3600
0
        LOCK(cs_main);
3601
0
        mapBlockSource.erase(block->GetHash());
3602
0
    }
3603
0
}
3604
3605
void PeerManagerImpl::ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
3606
0
{
3607
0
    std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
3608
0
    bool fBlockRead{false};
3609
0
    {
3610
0
        LOCK(cs_main);
3611
3612
0
        auto range_flight = mapBlocksInFlight.equal_range(block_transactions.blockhash);
3613
0
        size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
3614
0
        bool requested_block_from_this_peer{false};
3615
3616
        // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
3617
0
        bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
  Branch (3617:32): [True: 0, False: 0]
  Branch (3617:58): [True: 0, False: 0]
3618
3619
0
        while (range_flight.first != range_flight.second) {
  Branch (3619:16): [True: 0, False: 0]
3620
0
            auto [node_id, block_it] = range_flight.first->second;
3621
0
            if (node_id == pfrom.GetId() && block_it->partialBlock) {
  Branch (3621:17): [True: 0, False: 0]
  Branch (3621:45): [True: 0, False: 0]
3622
0
                requested_block_from_this_peer = true;
3623
0
                break;
3624
0
            }
3625
0
            range_flight.first++;
3626
0
        }
3627
3628
0
        if (!requested_block_from_this_peer) {
  Branch (3628:13): [True: 0, False: 0]
3629
0
            LogPrint(BCLog::NET, "Peer %d sent us block transactions for block we weren't expecting\n", pfrom.GetId());
3630
0
            return;
3631
0
        }
3632
3633
0
        PartiallyDownloadedBlock& partialBlock = *range_flight.first->second.second->partialBlock;
3634
0
        ReadStatus status = partialBlock.FillBlock(*pblock, block_transactions.txn);
3635
0
        if (status == READ_STATUS_INVALID) {
  Branch (3635:13): [True: 0, False: 0]
3636
0
            RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
3637
0
            Misbehaving(peer, "invalid compact block/non-matching block transactions");
3638
0
            return;
3639
0
        } else if (status == READ_STATUS_FAILED) {
  Branch (3639:20): [True: 0, False: 0]
3640
0
            if (first_in_flight) {
  Branch (3640:17): [True: 0, False: 0]
3641
                // Might have collided, fall back to getdata now :(
3642
0
                std::vector<CInv> invs;
3643
0
                invs.emplace_back(MSG_BLOCK | GetFetchFlags(peer), block_transactions.blockhash);
3644
0
                MakeAndPushMessage(pfrom, NetMsgType::GETDATA, invs);
3645
0
            } else {
3646
0
                RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3647
0
                LogPrint(BCLog::NET, "Peer %d sent us a compact block but it failed to reconstruct, waiting on first download to complete\n", pfrom.GetId());
3648
0
                return;
3649
0
            }
3650
0
        } else {
3651
            // Block is either okay, or possibly we received
3652
            // READ_STATUS_CHECKBLOCK_FAILED.
3653
            // Note that CheckBlock can only fail for one of a few reasons:
3654
            // 1. bad-proof-of-work (impossible here, because we've already
3655
            //    accepted the header)
3656
            // 2. merkleroot doesn't match the transactions given (already
3657
            //    caught in FillBlock with READ_STATUS_FAILED, so
3658
            //    impossible here)
3659
            // 3. the block is otherwise invalid (eg invalid coinbase,
3660
            //    block is too big, too many legacy sigops, etc).
3661
            // So if CheckBlock failed, #3 is the only possibility.
3662
            // Under BIP 152, we don't discourage the peer unless proof of work is
3663
            // invalid (we don't require all the stateless checks to have
3664
            // been run).  This is handled below, so just treat this as
3665
            // though the block was successfully read, and rely on the
3666
            // handling in ProcessNewBlock to ensure the block index is
3667
            // updated, etc.
3668
0
            RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // it is now an empty pointer
3669
0
            fBlockRead = true;
3670
            // mapBlockSource is used for potentially punishing peers and
3671
            // updating which peers send us compact blocks, so the race
3672
            // between here and cs_main in ProcessNewBlock is fine.
3673
            // BIP 152 permits peers to relay compact blocks after validating
3674
            // the header only; we should not punish peers if the block turns
3675
            // out to be invalid.
3676
0
            mapBlockSource.emplace(block_transactions.blockhash, std::make_pair(pfrom.GetId(), false));
3677
0
        }
3678
0
    } // Don't hold cs_main when we call into ProcessNewBlock
3679
0
    if (fBlockRead) {
  Branch (3679:9): [True: 0, False: 0]
3680
        // Since we requested this block (it was in mapBlocksInFlight), force it to be processed,
3681
        // even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc)
3682
        // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
3683
        // disk-space attacks), but this should be safe due to the
3684
        // protections in the compact block handler -- see related comment
3685
        // in compact block optimistic reconstruction handling.
3686
0
        ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
3687
0
    }
3688
0
    return;
3689
0
}
3690
3691
void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
3692
                                     const std::chrono::microseconds time_received,
3693
                                     const std::atomic<bool>& interruptMsgProc)
3694
5.64k
{
3695
5.64k
    AssertLockHeld(g_msgproc_mutex);
3696
3697
5.64k
    LogPrint(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
3698
3699
5.64k
    PeerRef peer = GetPeerRef(pfrom.GetId());
3700
5.64k
    if (peer == nullptr) return;
  Branch (3700:9): [True: 0, False: 5.64k]
3701
3702
5.64k
    if (msg_type == NetMsgType::VERSION) {
  Branch (3702:9): [True: 2.58k, False: 3.06k]
3703
2.58k
        if (pfrom.nVersion != 0) {
  Branch (3703:13): [True: 349, False: 2.23k]
3704
349
            LogPrint(BCLog::NET, "redundant version message from peer=%d\n", pfrom.GetId());
3705
349
            return;
3706
349
        }
3707
3708
2.23k
        int64_t nTime;
3709
2.23k
        CService addrMe;
3710
2.23k
        uint64_t nNonce = 1;
3711
2.23k
        ServiceFlags nServices;
3712
2.23k
        int nVersion;
3713
2.23k
        std::string cleanSubVer;
3714
2.23k
        int starting_height = -1;
3715
2.23k
        bool fRelay = true;
3716
3717
2.23k
        vRecv >> nVersion >> Using<CustomUintFormatter<8>>(nServices) >> nTime;
3718
2.23k
        if (nTime < 0) {
  Branch (3718:13): [True: 219, False: 2.01k]
3719
219
            nTime = 0;
3720
219
        }
3721
2.23k
        vRecv.ignore(8); // Ignore the addrMe service bits sent by the peer
3722
2.23k
        vRecv >> CNetAddr::V1(addrMe);
3723
2.23k
        if (!pfrom.IsInboundConn())
  Branch (3723:13): [True: 1.03k, False: 1.19k]
3724
1.03k
        {
3725
            // Overwrites potentially existing services. In contrast to this,
3726
            // unvalidated services received via gossip relay in ADDR/ADDRV2
3727
            // messages are only ever added but cannot replace existing ones.
3728
1.03k
            m_addrman.SetServices(pfrom.addr, nServices);
3729
1.03k
        }
3730
2.23k
        if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices))
  Branch (3730:13): [True: 382, False: 1.85k]
  Branch (3730:47): [True: 14, False: 368]
3731
14
        {
3732
14
            LogPrint(BCLog::NET, "peer=%d does not offer the expected services (%08x offered, %08x expected); disconnecting\n", pfrom.GetId(), nServices, GetDesirableServiceFlags(nServices));
3733
14
            pfrom.fDisconnect = true;
3734
14
            return;
3735
14
        }
3736
3737
2.21k
        if (nVersion < MIN_PEER_PROTO_VERSION) {
  Branch (3737:13): [True: 8, False: 2.21k]
3738
            // disconnect from peers older than this proto version
3739
8
            LogPrint(BCLog::NET, "peer=%d using obsolete version %i; disconnecting\n", pfrom.GetId(), nVersion);
3740
8
            pfrom.fDisconnect = true;
3741
8
            return;
3742
8
        }
3743
3744
2.21k
        if (!vRecv.empty()) {
  Branch (3744:13): [True: 1.13k, False: 1.07k]
3745
            // The version message includes information about the sending node which we don't use:
3746
            //   - 8 bytes (service bits)
3747
            //   - 16 bytes (ipv6 address)
3748
            //   - 2 bytes (port)
3749
1.13k
            vRecv.ignore(26);
3750
1.13k
            vRecv >> nNonce;
3751
1.13k
        }
3752
2.21k
        if (!vRecv.empty()) {
  Branch (3752:13): [True: 937, False: 1.27k]
3753
937
            std::string strSubVer;
3754
937
            vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
3755
937
            cleanSubVer = SanitizeString(strSubVer);
3756
937
        }
3757
2.21k
        if (!vRecv.empty()) {
  Branch (3757:13): [True: 394, False: 1.81k]
3758
394
            vRecv >> starting_height;
3759
394
        }
3760
2.21k
        if (!vRecv.empty())
  Branch (3760:13): [True: 258, False: 1.95k]
3761
258
            vRecv >> fRelay;
3762
        // Disconnect if we connected to ourself
3763
2.21k
        if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce))
  Branch (3763:13): [True: 144, False: 2.06k]
  Branch (3763:38): [True: 10, False: 134]
3764
10
        {
3765
10
            LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToStringAddrPort());
3766
10
            pfrom.fDisconnect = true;
3767
10
            return;
3768
10
        }
3769
3770
2.20k
        if (pfrom.IsInboundConn() && addrMe.IsRoutable())
  Branch (3770:13): [True: 134, False: 2.06k]
  Branch (3770:38): [True: 122, False: 12]
3771
122
        {
3772
122
            SeenLocal(addrMe);
3773
122
        }
3774
3775
        // Inbound peers send us their version message when they connect.
3776
        // We send our version message in response.
3777
2.20k
        if (pfrom.IsInboundConn()) {
  Branch (3777:13): [True: 134, False: 2.06k]
3778
134
            PushNodeVersion(pfrom, *peer);
3779
134
        }
3780
3781
        // Change version
3782
2.20k
        const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION);
3783
2.20k
        pfrom.SetCommonVersion(greatest_common_version);
3784
2.20k
        pfrom.nVersion = nVersion;
3785
3786
2.20k
        if (greatest_common_version >= WTXID_RELAY_VERSION) {
  Branch (3786:13): [True: 385, False: 1.81k]
3787
385
            MakeAndPushMessage(pfrom, NetMsgType::WTXIDRELAY);
3788
385
        }
3789
3790
        // Signal ADDRv2 support (BIP155).
3791
2.20k
        if (greatest_common_version >= 70016) {
  Branch (3791:13): [True: 385, False: 1.81k]
3792
            // BIP155 defines addrv2 and sendaddrv2 for all protocol versions, but some
3793
            // implementations reject messages they don't know. As a courtesy, don't send
3794
            // it to nodes with a version before 70016, as no software is known to support
3795
            // BIP155 that doesn't announce at least that protocol version number.
3796
385
            MakeAndPushMessage(pfrom, NetMsgType::SENDADDRV2);
3797
385
        }
3798
3799
2.20k
        pfrom.m_has_all_wanted_services = HasAllDesirableServiceFlags(nServices);
3800
2.20k
        peer->m_their_services = nServices;
3801
2.20k
        pfrom.SetAddrLocal(addrMe);
3802
2.20k
        {
3803
2.20k
            LOCK(pfrom.m_subver_mutex);
3804
2.20k
            pfrom.cleanSubVer = cleanSubVer;
3805
2.20k
        }
3806
2.20k
        peer->m_starting_height = starting_height;
3807
3808
        // Only initialize the Peer::TxRelay m_relay_txs data structure if:
3809
        // - this isn't an outbound block-relay-only connection, and
3810
        // - this isn't an outbound feeler connection, and
3811
        // - fRelay=true (the peer wishes to receive transaction announcements)
3812
        //   or we're offering NODE_BLOOM to this peer. NODE_BLOOM means that
3813
        //   the peer may turn on transaction relay later.
3814
2.20k
        if (!pfrom.IsBlockOnlyConn() &&
  Branch (3814:13): [True: 397, False: 1.80k]
3815
2.20k
            !pfrom.IsFeelerConn() &&
  Branch (3815:13): [True: 361, False: 36]
3816
2.20k
            (fRelay || (peer->m_our_services & NODE_BLOOM))) {
  Branch (3816:14): [True: 310, False: 51]
  Branch (3816:24): [True: 21, False: 30]
3817
331
            auto* const tx_relay = peer->SetTxRelay();
3818
331
            {
3819
331
                LOCK(tx_relay->m_bloom_filter_mutex);
3820
331
                tx_relay->m_relay_txs = fRelay; // set to true after we get the first filter* message
3821
331
            }
3822
331
            if (fRelay) pfrom.m_relays_txs = true;
  Branch (3822:17): [True: 310, False: 21]
3823
331
        }
3824
3825
2.20k
        if (greatest_common_version >= WTXID_RELAY_VERSION && m_txreconciliation) {
  Branch (3825:13): [True: 385, False: 1.81k]
  Branch (3825:63): [True: 385, False: 0]
3826
            // Per BIP-330, we announce txreconciliation support if:
3827
            // - protocol version per the peer's VERSION message supports WTXID_RELAY;
3828
            // - transaction relay is supported per the peer's VERSION message
3829
            // - this is not a block-relay-only connection and not a feeler
3830
            // - this is not an addr fetch connection;
3831
            // - we are not in -blocksonly mode.
3832
385
            const auto* tx_relay = peer->GetTxRelay();
3833
385
            if (tx_relay && WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs) &&
  Branch (3833:17): [True: 300, False: 85]
  Branch (3833:17): [True: 264, False: 121]
3834
385
                !pfrom.IsAddrFetchConn() && !m_opts.ignore_incoming_txs) {
  Branch (3834:17): [True: 264, False: 17]
  Branch (3834:45): [True: 264, False: 0]
3835
264
                const uint64_t recon_salt = m_txreconciliation->PreRegisterPeer(pfrom.GetId());
3836
264
                MakeAndPushMessage(pfrom, NetMsgType::SENDTXRCNCL,
3837
264
                                   TXRECONCILIATION_VERSION, recon_salt);
3838
264
            }
3839
385
        }
3840
3841
2.20k
        MakeAndPushMessage(pfrom, NetMsgType::VERACK);
3842
3843
        // Potentially mark this peer as a preferred download peer.
3844
2.20k
        {
3845
2.20k
            LOCK(cs_main);
3846
2.20k
            CNodeState* state = State(pfrom.GetId());
3847
2.20k
            state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(*peer);
  Branch (3847:42): [True: 2.06k, False: 134]
  Branch (3847:68): [True: 15, False: 119]
  Branch (3847:119): [True: 283, False: 19]
  Branch (3847:147): [True: 242, False: 41]
3848
2.20k
            m_num_preferred_download_peers += state->fPreferredDownload;
3849
2.20k
        }
3850
3851
        // Attempt to initialize address relay for outbound peers and use result
3852
        // to decide whether to send GETADDR, so that we don't send it to
3853
        // inbound or outbound block-relay-only peers.
3854
2.20k
        bool send_getaddr{false};
3855
2.20k
        if (!pfrom.IsInboundConn()) {
  Branch (3855:13): [True: 287, False: 1.91k]
3856
287
            send_getaddr = SetupAddressRelay(pfrom, *peer);
3857
287
        }
3858
2.20k
        if (send_getaddr) {
  Branch (3858:13): [True: 263, False: 1.93k]
3859
            // Do a one-time address fetch to help populate/update our addrman.
3860
            // If we're starting up for the first time, our addrman may be pretty
3861
            // empty, so this mechanism is important to help us connect to the network.
3862
            // We skip this for block-relay-only peers. We want to avoid
3863
            // potentially leaking addr information and we do not want to
3864
            // indicate to the peer that we will participate in addr relay.
3865
263
            MakeAndPushMessage(pfrom, NetMsgType::GETADDR);
3866
263
            peer->m_getaddr_sent = true;
3867
            // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND addresses in response
3868
            // (bypassing the MAX_ADDR_PROCESSING_TOKEN_BUCKET limit).
3869
263
            peer->m_addr_token_bucket += MAX_ADDR_TO_SEND;
3870
263
        }
3871
3872
2.20k
        if (!pfrom.IsInboundConn()) {
  Branch (3872:13): [True: 287, False: 1.91k]
3873
            // For non-inbound connections, we update the addrman to record
3874
            // connection success so that addrman will have an up-to-date
3875
            // notion of which peers are online and available.
3876
            //
3877
            // While we strive to not leak information about block-relay-only
3878
            // connections via the addrman, not moving an address to the tried
3879
            // table is also potentially detrimental because new-table entries
3880
            // are subject to eviction in the event of addrman collisions.  We
3881
            // mitigate the information-leak by never calling
3882
            // AddrMan::Connected() on block-relay-only peers; see
3883
            // FinalizeNode().
3884
            //
3885
            // This moves an address from New to Tried table in Addrman,
3886
            // resolves tried-table collisions, etc.
3887
287
            m_addrman.Good(pfrom.addr);
3888
287
        }
3889
3890
2.20k
        std::string remoteAddr;
3891
2.20k
        if (fLogIPs)
  Branch (3891:13): [True: 0, False: 2.20k]
3892
0
            remoteAddr = ", peeraddr=" + pfrom.addr.ToStringAddrPort();
3893
3894
2.20k
        const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3895
2.20k
        LogPrint(BCLog::NET, "receive version message: %s: version %d, blocks=%d, us=%s, txrelay=%d, peer=%d%s%s\n",
3896
2.20k
                  cleanSubVer, pfrom.nVersion,
3897
2.20k
                  peer->m_starting_height, addrMe.ToStringAddrPort(), fRelay, pfrom.GetId(),
3898
2.20k
                  remoteAddr, (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3899
3900
2.20k
        peer->m_time_offset = NodeSeconds{std::chrono::seconds{nTime}} - Now<NodeSeconds>();
3901
2.20k
        if (!pfrom.IsInboundConn()) {
  Branch (3901:13): [True: 287, False: 1.91k]
3902
            // Don't use timedata samples from inbound peers to make it
3903
            // harder for others to create false warnings about our clock being out of sync.
3904
287
            m_outbound_time_offsets.Add(peer->m_time_offset);
3905
287
            m_outbound_time_offsets.WarnIfOutOfSync();
3906
287
        }
3907
3908
        // If the peer is old enough to have the old alert system, send it the final alert.
3909
2.20k
        if (greatest_common_version <= 70012) {
  Branch (3909:13): [True: 35, False: 2.16k]
3910
35
            const auto finalAlert{ParseHex("60010000000000000000000000ffffff7f00000000ffffff7ffeffff7f01ffffff7f00000000ffffff7f00ffffff7f002f555247454e543a20416c657274206b657920636f6d70726f6d697365642c2075706772616465207265717569726564004630440220653febd6410f470f6bae11cad19c48413becb1ac2c17f908fd0fd53bdc3abd5202206d0e9c96fe88d4a0f01ed9dedae2b6f9e00da94cad0fecaae66ecf689bf71b50")};
3911
35
            MakeAndPushMessage(pfrom, "alert", Span{finalAlert});
3912
35
        }
3913
3914
        // Feeler connections exist only to verify if address is online.
3915
2.20k
        if (pfrom.IsFeelerConn()) {
  Branch (3915:13): [True: 36, False: 2.16k]
3916
36
            LogPrint(BCLog::NET, "feeler connection completed peer=%d; disconnecting\n", pfrom.GetId());
3917
36
            pfrom.fDisconnect = true;
3918
36
        }
3919
2.20k
        return;
3920
2.21k
    }
3921
3922
3.06k
    if (pfrom.nVersion == 0) {
  Branch (3922:9): [True: 1.12k, False: 1.93k]
3923
        // Must have a version message before anything else
3924
1.12k
        LogPrint(BCLog::NET, "non-version message before version handshake. Message \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3925
1.12k
        return;
3926
1.12k
    }
3927
3928
1.93k
    if (msg_type == NetMsgType::VERACK) {
  Branch (3928:9): [True: 163, False: 1.77k]
3929
163
        if (pfrom.fSuccessfullyConnected) {
  Branch (3929:13): [True: 0, False: 163]
3930
0
            LogPrint(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId());
3931
0
            return;
3932
0
        }
3933
3934
        // Log successful connections unconditionally for outbound, but not for inbound as those
3935
        // can be triggered by an attacker at high rate.
3936
163
        if (!pfrom.IsInboundConn() || LogAcceptCategory(BCLog::NET, BCLog::Level::Debug)) {
  Branch (3936:13): [True: 127, False: 36]
  Branch (3936:39): [True: 0, False: 36]
3937
127
            const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3938
127
            LogPrintf("New %s %s peer connected: version: %d, blocks=%d, peer=%d%s%s\n",
3939
127
                      pfrom.ConnectionTypeAsString(),
3940
127
                      TransportTypeAsString(pfrom.m_transport->GetInfo().transport_type),
3941
127
                      pfrom.nVersion.load(), peer->m_starting_height,
3942
127
                      pfrom.GetId(), (fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToStringAddrPort()) : ""),
3943
127
                      (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3944
127
        }
3945
3946
163
        if (pfrom.GetCommonVersion() >= SHORT_IDS_BLOCKS_VERSION) {
  Branch (3946:13): [True: 157, False: 6]
3947
            // Tell our peer we are willing to provide version 2 cmpctblocks.
3948
            // However, we do not request new block announcements using
3949
            // cmpctblock messages.
3950
            // We send this to non-NODE NETWORK peers as well, because
3951
            // they may wish to request compact blocks from us
3952
157
            MakeAndPushMessage(pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
3953
157
        }
3954
3955
163
        if (m_txreconciliation) {
  Branch (3955:13): [True: 163, False: 0]
3956
163
            if (!peer->m_wtxid_relay || !m_txreconciliation->IsPeerRegistered(pfrom.GetId())) {
  Branch (3956:17): [True: 155, False: 8]
  Branch (3956:41): [True: 7, False: 1]
3957
                // We could have optimistically pre-registered/registered the peer. In that case,
3958
                // we should forget about the reconciliation state here if this wasn't followed
3959
                // by WTXIDRELAY (since WTXIDRELAY can't be announced later).
3960
162
                m_txreconciliation->ForgetPeer(pfrom.GetId());
3961
162
            }
3962
163
        }
3963
3964
163
        if (auto tx_relay = peer->GetTxRelay()) {
  Branch (3964:18): [True: 134, False: 29]
3965
            // `TxRelay::m_tx_inventory_to_send` must be empty before the
3966
            // version handshake is completed as
3967
            // `TxRelay::m_next_inv_send_time` is first initialised in
3968
            // `SendMessages` after the verack is received. Any transactions
3969
            // received during the version handshake would otherwise
3970
            // immediately be advertised without random delay, potentially
3971
            // leaking the time of arrival to a spy.
3972
134
            Assume(WITH_LOCK(
3973
134
                tx_relay->m_tx_inventory_mutex,
3974
134
                return tx_relay->m_tx_inventory_to_send.empty() &&
3975
134
                       tx_relay->m_next_inv_send_time == 0s));
3976
134
        }
3977
3978
163
        pfrom.fSuccessfullyConnected = true;
3979
163
        return;
3980
163
    }
3981
3982
1.77k
    if (msg_type == NetMsgType::SENDHEADERS) {
  Branch (3982:9): [True: 79, False: 1.69k]
3983
79
        peer->m_prefers_headers = true;
3984
79
        return;
3985
79
    }
3986
3987
1.69k
    if (msg_type == NetMsgType::SENDCMPCT) {
  Branch (3987:9): [True: 304, False: 1.39k]
3988
304
        bool sendcmpct_hb{false};
3989
304
        uint64_t sendcmpct_version{0};
3990
304
        vRecv >> sendcmpct_hb >> sendcmpct_version;
3991
3992
        // Only support compact block relay with witnesses
3993
304
        if (sendcmpct_version != CMPCTBLOCKS_VERSION) return;
  Branch (3993:13): [True: 123, False: 181]
3994
3995
181
        LOCK(cs_main);
3996
181
        CNodeState* nodestate = State(pfrom.GetId());
3997
181
        nodestate->m_provides_cmpctblocks = true;
3998
181
        nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb;
3999
        // save whether peer selects us as BIP152 high-bandwidth peer
4000
        // (receiving sendcmpct(1) signals high-bandwidth, sendcmpct(0) low-bandwidth)
4001
181
        pfrom.m_bip152_highbandwidth_from = sendcmpct_hb;
4002
181
        return;
4003
304
    }
4004
4005
    // BIP339 defines feature negotiation of wtxidrelay, which must happen between
4006
    // VERSION and VERACK to avoid relay problems from switching after a connection is up.
4007
1.39k
    if (msg_type == NetMsgType::WTXIDRELAY) {
  Branch (4007:9): [True: 168, False: 1.22k]
4008
168
        if (pfrom.fSuccessfullyConnected) {
  Branch (4008:13): [True: 0, False: 168]
4009
            // Disconnect peers that send a wtxidrelay message after VERACK.
4010
0
            LogPrint(BCLog::NET, "wtxidrelay received after verack from peer=%d; disconnecting\n", pfrom.GetId());
4011
0
            pfrom.fDisconnect = true;
4012
0
            return;
4013
0
        }
4014
168
        if (pfrom.GetCommonVersion() >= WTXID_RELAY_VERSION) {
  Branch (4014:13): [True: 95, False: 73]
4015
95
            if (!peer->m_wtxid_relay) {
  Branch (4015:17): [True: 20, False: 75]
4016
20
                peer->m_wtxid_relay = true;
4017
20
                m_wtxid_relay_peers++;
4018
75
            } else {
4019
75
                LogPrint(BCLog::NET, "ignoring duplicate wtxidrelay from peer=%d\n", pfrom.GetId());
4020
75
            }
4021
95
        } else {
4022
73
            LogPrint(BCLog::NET, "ignoring wtxidrelay due to old common version=%d from peer=%d\n", pfrom.GetCommonVersion(), pfrom.GetId());
4023
73
        }
4024
168
        return;
4025
168
    }
4026
4027
    // BIP155 defines feature negotiation of addrv2 and sendaddrv2, which must happen
4028
    // between VERSION and VERACK.
4029
1.22k
    if (msg_type == NetMsgType::SENDADDRV2) {
  Branch (4029:9): [True: 137, False: 1.08k]
4030
137
        if (pfrom.fSuccessfullyConnected) {
  Branch (4030:13): [True: 0, False: 137]
4031
            // Disconnect peers that send a SENDADDRV2 message after VERACK.
4032
0
            LogPrint(BCLog::NET, "sendaddrv2 received after verack from peer=%d; disconnecting\n", pfrom.GetId());
4033
0
            pfrom.fDisconnect = true;
4034
0
            return;
4035
0
        }
4036
137
        peer->m_wants_addrv2 = true;
4037
137
        return;
4038
137
    }
4039
4040
    // Received from a peer demonstrating readiness to announce transactions via reconciliations.
4041
    // This feature negotiation must happen between VERSION and VERACK to avoid relay problems
4042
    // from switching announcement protocols after the connection is up.
4043
1.08k
    if (msg_type == NetMsgType::SENDTXRCNCL) {
  Branch (4043:9): [True: 296, False: 790]
4044
296
        if (!m_txreconciliation) {
  Branch (4044:13): [True: 0, False: 296]
4045
0
            LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl from peer=%d ignored, as our node does not have txreconciliation enabled\n", pfrom.GetId());
4046
0
            return;
4047
0
        }
4048
4049
296
        if (pfrom.fSuccessfullyConnected) {
  Branch (4049:13): [True: 0, False: 296]
4050
0
            LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received after verack from peer=%d; disconnecting\n", pfrom.GetId());
4051
0
            pfrom.fDisconnect = true;
4052
0
            return;
4053
0
        }
4054
4055
        // Peer must not offer us reconciliations if we specified no tx relay support in VERSION.
4056
296
        if (RejectIncomingTxs(pfrom)) {
  Branch (4056:13): [True: 3, False: 293]
4057
3
            LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received from peer=%d to which we indicated no tx relay; disconnecting\n", pfrom.GetId());
4058
3
            pfrom.fDisconnect = true;
4059
3
            return;
4060
3
        }
4061
4062
        // Peer must not offer us reconciliations if they specified no tx relay support in VERSION.
4063
        // This flag might also be false in other cases, but the RejectIncomingTxs check above
4064
        // eliminates them, so that this flag fully represents what we are looking for.
4065
293
        const auto* tx_relay = peer->GetTxRelay();
4066
293
        if (!tx_relay || !WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs)) {
  Branch (4066:13): [True: 3, False: 290]
  Branch (4066:13): [True: 9, False: 284]
  Branch (4066:26): [True: 6, False: 284]
4067
9
            LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received from peer=%d which indicated no tx relay to us; disconnecting\n", pfrom.GetId());
4068
9
            pfrom.fDisconnect = true;
4069
9
            return;
4070
9
        }
4071
4072
284
        uint32_t peer_txreconcl_version;
4073
284
        uint64_t remote_salt;
4074
284
        vRecv >> peer_txreconcl_version >> remote_salt;
4075
4076
284
        const ReconciliationRegisterResult result = m_txreconciliation->RegisterPeer(pfrom.GetId(), pfrom.IsInboundConn(),
4077
284
                                                                                     peer_txreconcl_version, remote_salt);
4078
284
        switch (result) {
  Branch (4078:17): [True: 121, False: 163]
4079
142
        case ReconciliationRegisterResult::NOT_FOUND:
  Branch (4079:9): [True: 142, False: 142]
4080
142
            LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Ignore unexpected txreconciliation signal from peer=%d\n", pfrom.GetId());
4081
142
            break;
4082
14
        case ReconciliationRegisterResult::SUCCESS:
  Branch (4082:9): [True: 14, False: 270]
4083
14
            break;
4084
6
        case ReconciliationRegisterResult::ALREADY_REGISTERED:
  Branch (4084:9): [True: 6, False: 278]
4085
6
            LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "txreconciliation protocol violation from peer=%d (sendtxrcncl received from already registered peer); disconnecting\n", pfrom.GetId());
4086
6
            pfrom.fDisconnect = true;
4087
6
            return;
4088
1
        case ReconciliationRegisterResult::PROTOCOL_VIOLATION:
  Branch (4088:9): [True: 1, False: 283]
4089
1
            LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "txreconciliation protocol violation from peer=%d; disconnecting\n", pfrom.GetId());
4090
1
            pfrom.fDisconnect = true;
4091
1
            return;
4092
284
        }
4093
156
        return;
4094
284
    }
4095
4096
790
    if (!pfrom.fSuccessfullyConnected) {
  Branch (4096:9): [True: 790, False: 0]
4097
790
        LogPrint(BCLog::NET, "Unsupported message \"%s\" prior to verack from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
4098
790
        return;
4099
790
    }
4100
4101
0
    if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
  Branch (4101:9): [True: 0, False: 0]
  Branch (4101:41): [True: 0, False: 0]
4102
0
        const auto ser_params{
4103
0
            msg_type == NetMsgType::ADDRV2 ?
  Branch (4103:13): [True: 0, False: 0]
4104
            // Set V2 param so that the CNetAddr and CAddress
4105
            // unserialize methods know that an address in v2 format is coming.
4106
0
            CAddress::V2_NETWORK :
4107
0
            CAddress::V1_NETWORK,
4108
0
        };
4109
4110
0
        std::vector<CAddress> vAddr;
4111
4112
0
        vRecv >> ser_params(vAddr);
4113
4114
0
        if (!SetupAddressRelay(pfrom, *peer)) {
  Branch (4114:13): [True: 0, False: 0]
4115
0
            LogPrint(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId());
4116
0
            return;
4117
0
        }
4118
4119
0
        if (vAddr.size() > MAX_ADDR_TO_SEND)
  Branch (4119:13): [True: 0, False: 0]
4120
0
        {
4121
0
            Misbehaving(*peer, strprintf("%s message size = %u", msg_type, vAddr.size()));
4122
0
            return;
4123
0
        }
4124
4125
        // Store the new addresses
4126
0
        std::vector<CAddress> vAddrOk;
4127
0
        const auto current_a_time{Now<NodeSeconds>()};
4128
4129
        // Update/increment addr rate limiting bucket.
4130
0
        const auto current_time{GetTime<std::chrono::microseconds>()};
4131
0
        if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) {
  Branch (4131:13): [True: 0, False: 0]
4132
            // Don't increment bucket if it's already full
4133
0
            const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us);
4134
0
            const double increment = Ticks<SecondsDouble>(time_diff) * MAX_ADDR_RATE_PER_SECOND;
4135
0
            peer->m_addr_token_bucket = std::min<double>(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET);
4136
0
        }
4137
0
        peer->m_addr_token_timestamp = current_time;
4138
4139
0
        const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr);
4140
0
        uint64_t num_proc = 0;
4141
0
        uint64_t num_rate_limit = 0;
4142
0
        Shuffle(vAddr.begin(), vAddr.end(), m_rng);
4143
0
        for (CAddress& addr : vAddr)
  Branch (4143:29): [True: 0, False: 0]
4144
0
        {
4145
0
            if (interruptMsgProc)
  Branch (4145:17): [True: 0, False: 0]
4146
0
                return;
4147
4148
            // Apply rate limiting.
4149
0
            if (peer->m_addr_token_bucket < 1.0) {
  Branch (4149:17): [True: 0, False: 0]
4150
0
                if (rate_limited) {
  Branch (4150:21): [True: 0, False: 0]
4151
0
                    ++num_rate_limit;
4152
0
                    continue;
4153
0
                }
4154
0
            } else {
4155
0
                peer->m_addr_token_bucket -= 1.0;
4156
0
            }
4157
            // We only bother storing full nodes, though this may include
4158
            // things which we would not make an outbound connection to, in
4159
            // part because we may make feeler connections to them.
4160
0
            if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices))
  Branch (4160:17): [True: 0, False: 0]
  Branch (4160:60): [True: 0, False: 0]
4161
0
                continue;
4162
4163
0
            if (addr.nTime <= NodeSeconds{100000000s} || addr.nTime > current_a_time + 10min) {
  Branch (4163:17): [True: 0, False: 0]
  Branch (4163:17): [True: 0, False: 0]
  Branch (4163:58): [True: 0, False: 0]
4164
0
                addr.nTime = current_a_time - 5 * 24h;
4165
0
            }
4166
0
            AddAddressKnown(*peer, addr);
4167
0
            if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
  Branch (4167:17): [True: 0, False: 0]
  Branch (4167:30): [True: 0, False: 0]
  Branch (4167:63): [True: 0, False: 0]
4168
                // Do not process banned/discouraged addresses beyond remembering we received them
4169
0
                continue;
4170
0
            }
4171
0
            ++num_proc;
4172
0
            const bool reachable{g_reachable_nets.Contains(addr)};
4173
0
            if (addr.nTime > current_a_time - 10min && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) {
  Branch (4173:17): [True: 0, False: 0]
  Branch (4173:17): [True: 0, False: 0]
  Branch (4173:56): [True: 0, False: 0]
  Branch (4173:81): [True: 0, False: 0]
  Branch (4173:103): [True: 0, False: 0]
4174
                // Relay to a limited number of other nodes
4175
0
                RelayAddress(pfrom.GetId(), addr, reachable);
4176
0
            }
4177
            // Do not store addresses outside our network
4178
0
            if (reachable) {
  Branch (4178:17): [True: 0, False: 0]
4179
0
                vAddrOk.push_back(addr);
4180
0
            }
4181
0
        }
4182
0
        peer->m_addr_processed += num_proc;
4183
0
        peer->m_addr_rate_limited += num_rate_limit;
4184
0
        LogPrint(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) from peer=%d\n",
4185
0
                 vAddr.size(), num_proc, num_rate_limit, pfrom.GetId());
4186
4187
0
        m_addrman.Add(vAddrOk, pfrom.addr, 2h);
4188
0
        if (vAddr.size() < 1000) peer->m_getaddr_sent = false;
  Branch (4188:13): [True: 0, False: 0]
4189
4190
        // AddrFetch: Require multiple addresses to avoid disconnecting on self-announcements
4191
0
        if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) {
  Branch (4191:13): [True: 0, False: 0]
  Branch (4191:40): [True: 0, False: 0]
4192
0
            LogPrint(BCLog::NET, "addrfetch connection completed peer=%d; disconnecting\n", pfrom.GetId());
4193
0
            pfrom.fDisconnect = true;
4194
0
        }
4195
0
        return;
4196
0
    }
4197
4198
0
    if (msg_type == NetMsgType::INV) {
  Branch (4198:9): [True: 0, False: 0]
4199
0
        std::vector<CInv> vInv;
4200
0
        vRecv >> vInv;
4201
0
        if (vInv.size() > MAX_INV_SZ)
  Branch (4201:13): [True: 0, False: 0]
4202
0
        {
4203
0
            Misbehaving(*peer, strprintf("inv message size = %u", vInv.size()));
4204
0
            return;
4205
0
        }
4206
4207
0
        const bool reject_tx_invs{RejectIncomingTxs(pfrom)};
4208
4209
0
        LOCK(cs_main);
4210
4211
0
        const auto current_time{GetTime<std::chrono::microseconds>()};
4212
0
        uint256* best_block{nullptr};
4213
4214
0
        for (CInv& inv : vInv) {
  Branch (4214:24): [True: 0, False: 0]
4215
0
            if (interruptMsgProc) return;
  Branch (4215:17): [True: 0, False: 0]
4216
4217
            // Ignore INVs that don't match wtxidrelay setting.
4218
            // Note that orphan parent fetching always uses MSG_TX GETDATAs regardless of the wtxidrelay setting.
4219
            // This is fine as no INV messages are involved in that process.
4220
0
            if (peer->m_wtxid_relay) {
  Branch (4220:17): [True: 0, False: 0]
4221
0
                if (inv.IsMsgTx()) continue;
  Branch (4221:21): [True: 0, False: 0]
4222
0
            } else {
4223
0
                if (inv.IsMsgWtx()) continue;
  Branch (4223:21): [True: 0, False: 0]
4224
0
            }
4225
4226
0
            if (inv.IsMsgBlk()) {
  Branch (4226:17): [True: 0, False: 0]
4227
0
                const bool fAlreadyHave = AlreadyHaveBlock(inv.hash);
4228
0
                LogPrint(BCLog::NET, "got inv: %s  %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
4229
4230
0
                UpdateBlockAvailability(pfrom.GetId(), inv.hash);
4231
0
                if (!fAlreadyHave && !m_chainman.m_blockman.LoadingBlocks() && !IsBlockRequested(inv.hash)) {
  Branch (4231:21): [True: 0, False: 0]
  Branch (4231:38): [True: 0, False: 0]
  Branch (4231:80): [True: 0, False: 0]
4232
                    // Headers-first is the primary method of announcement on
4233
                    // the network. If a node fell back to sending blocks by
4234
                    // inv, it may be for a re-org, or because we haven't
4235
                    // completed initial headers sync. The final block hash
4236
                    // provided should be the highest, so send a getheaders and
4237
                    // then fetch the blocks we need to catch up.
4238
0
                    best_block = &inv.hash;
4239
0
                }
4240
0
            } else if (inv.IsGenTxMsg()) {
  Branch (4240:24): [True: 0, False: 0]
4241
0
                if (reject_tx_invs) {
  Branch (4241:21): [True: 0, False: 0]
4242
0
                    LogPrint(BCLog::NET, "transaction (%s) inv sent in violation of protocol, disconnecting peer=%d\n", inv.hash.ToString(), pfrom.GetId());
4243
0
                    pfrom.fDisconnect = true;
4244
0
                    return;
4245
0
                }
4246
0
                const GenTxid gtxid = ToGenTxid(inv);
4247
0
                const bool fAlreadyHave = AlreadyHaveTx(gtxid, /*include_reconsiderable=*/true);
4248
0
                LogPrint(BCLog::NET, "got inv: %s  %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
4249
4250
0
                AddKnownTx(*peer, inv.hash);
4251
0
                if (!fAlreadyHave && !m_chainman.IsInitialBlockDownload()) {
  Branch (4251:21): [True: 0, False: 0]
  Branch (4251:38): [True: 0, False: 0]
4252
0
                    AddTxAnnouncement(pfrom, gtxid, current_time);
4253
0
                }
4254
0
            } else {
4255
0
                LogPrint(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId());
4256
0
            }
4257
0
        }
4258
4259
0
        if (best_block != nullptr) {
  Branch (4259:13): [True: 0, False: 0]
4260
            // If we haven't started initial headers-sync with this peer, then
4261
            // consider sending a getheaders now. On initial startup, there's a
4262
            // reliability vs bandwidth tradeoff, where we are only trying to do
4263
            // initial headers sync with one peer at a time, with a long
4264
            // timeout (at which point, if the sync hasn't completed, we will
4265
            // disconnect the peer and then choose another). In the meantime,
4266
            // as new blocks are found, we are willing to add one new peer per
4267
            // block to sync with as well, to sync quicker in the case where
4268
            // our initial peer is unresponsive (but less bandwidth than we'd
4269
            // use if we turned on sync with all peers).
4270
0
            CNodeState& state{*Assert(State(pfrom.GetId()))};
4271
0
            if (state.fSyncStarted || (!peer->m_inv_triggered_getheaders_before_sync && *best_block != m_last_block_inv_triggering_headers_sync)) {
  Branch (4271:17): [True: 0, False: 0]
  Branch (4271:40): [True: 0, False: 0]
  Branch (4271:89): [True: 0, False: 0]
4272
0
                if (MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer)) {
  Branch (4272:21): [True: 0, False: 0]
4273
0
                    LogPrint(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
4274
0
                            m_chainman.m_best_header->nHeight, best_block->ToString(),
4275
0
                            pfrom.GetId());
4276
0
                }
4277
0
                if (!state.fSyncStarted) {
  Branch (4277:21): [True: 0, False: 0]
4278
0
                    peer->m_inv_triggered_getheaders_before_sync = true;
4279
                    // Update the last block hash that triggered a new headers
4280
                    // sync, so that we don't turn on headers sync with more
4281
                    // than 1 new peer every new block.
4282
0
                    m_last_block_inv_triggering_headers_sync = *best_block;
4283
0
                }
4284
0
            }
4285
0
        }
4286
4287
0
        return;
4288
0
    }
4289
4290
0
    if (msg_type == NetMsgType::GETDATA) {
  Branch (4290:9): [True: 0, False: 0]
4291
0
        std::vector<CInv> vInv;
4292
0
        vRecv >> vInv;
4293
0
        if (vInv.size() > MAX_INV_SZ)
  Branch (4293:13): [True: 0, False: 0]
4294
0
        {
4295
0
            Misbehaving(*peer, strprintf("getdata message size = %u", vInv.size()));
4296
0
            return;
4297
0
        }
4298
4299
0
        LogPrint(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId());
4300
4301
0
        if (vInv.size() > 0) {
  Branch (4301:13): [True: 0, False: 0]
4302
0
            LogPrint(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId());
4303
0
        }
4304
4305
0
        {
4306
0
            LOCK(peer->m_getdata_requests_mutex);
4307
0
            peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end());
4308
0
            ProcessGetData(pfrom, *peer, interruptMsgProc);
4309
0
        }
4310
4311
0
        return;
4312
0
    }
4313
4314
0
    if (msg_type == NetMsgType::GETBLOCKS) {
  Branch (4314:9): [True: 0, False: 0]
4315
0
        CBlockLocator locator;
4316
0
        uint256 hashStop;
4317
0
        vRecv >> locator >> hashStop;
4318
4319
0
        if (locator.vHave.size() > MAX_LOCATOR_SZ) {
  Branch (4319:13): [True: 0, False: 0]
4320
0
            LogPrint(BCLog::NET, "getblocks locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
4321
0
            pfrom.fDisconnect = true;
4322
0
            return;
4323
0
        }
4324
4325
        // We might have announced the currently-being-connected tip using a
4326
        // compact block, which resulted in the peer sending a getblocks
4327
        // request, which we would otherwise respond to without the new block.
4328
        // To avoid this situation we simply verify that we are on our best
4329
        // known chain now. This is super overkill, but we handle it better
4330
        // for getheaders requests, and there are no known nodes which support
4331
        // compact blocks but still use getblocks to request blocks.
4332
0
        {
4333
0
            std::shared_ptr<const CBlock> a_recent_block;
4334
0
            {
4335
0
                LOCK(m_most_recent_block_mutex);
4336
0
                a_recent_block = m_most_recent_block;
4337
0
            }
4338
0
            BlockValidationState state;
4339
0
            if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
  Branch (4339:17): [True: 0, False: 0]
4340
0
                LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
4341
0
            }
4342
0
        }
4343
4344
0
        LOCK(cs_main);
4345
4346
        // Find the last block the caller has in the main chain
4347
0
        const CBlockIndex* pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4348
4349
        // Send the rest of the chain
4350
0
        if (pindex)
  Branch (4350:13): [True: 0, False: 0]
4351
0
            pindex = m_chainman.ActiveChain().Next(pindex);
4352
0
        int nLimit = 500;
4353
0
        LogPrint(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId());
4354
0
        for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
  Branch (4354:16): [True: 0, False: 0]
4355
0
        {
4356
0
            if (pindex->GetBlockHash() == hashStop)
  Branch (4356:17): [True: 0, False: 0]
4357
0
            {
4358
0
                LogPrint(BCLog::NET, "  getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4359
0
                break;
4360
0
            }
4361
            // If pruning, don't inv blocks unless we have on disk and are likely to still have
4362
            // for some reasonable time window (1 hour) that block relay might require.
4363
0
            const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
4364
0
            if (m_chainman.m_blockman.IsPruneMode() && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) {
  Branch (4364:17): [True: 0, False: 0]
  Branch (4364:57): [True: 0, False: 0]
  Branch (4364:97): [True: 0, False: 0]
4365
0
                LogPrint(BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4366
0
                break;
4367
0
            }
4368
0
            WITH_LOCK(peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash()));
4369
0
            if (--nLimit <= 0) {
  Branch (4369:17): [True: 0, False: 0]
4370
                // When this block is requested, we'll send an inv that'll
4371
                // trigger the peer to getblocks the next batch of inventory.
4372
0
                LogPrint(BCLog::NET, "  getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4373
0
                WITH_LOCK(peer->m_block_inv_mutex, {peer->m_continuation_block = pindex->GetBlockHash();});
4374
0
                break;
4375
0
            }
4376
0
        }
4377
0
        return;
4378
0
    }
4379
4380
0
    if (msg_type == NetMsgType::GETBLOCKTXN) {
  Branch (4380:9): [True: 0, False: 0]
4381
0
        BlockTransactionsRequest req;
4382
0
        vRecv >> req;
4383
4384
0
        std::shared_ptr<const CBlock> recent_block;
4385
0
        {
4386
0
            LOCK(m_most_recent_block_mutex);
4387
0
            if (m_most_recent_block_hash == req.blockhash)
  Branch (4387:17): [True: 0, False: 0]
4388
0
                recent_block = m_most_recent_block;
4389
            // Unlock m_most_recent_block_mutex to avoid cs_main lock inversion
4390
0
        }
4391
0
        if (recent_block) {
  Branch (4391:13): [True: 0, False: 0]
4392
0
            SendBlockTransactions(pfrom, *peer, *recent_block, req);
4393
0
            return;
4394
0
        }
4395
4396
0
        FlatFilePos block_pos{};
4397
0
        {
4398
0
            LOCK(cs_main);
4399
4400
0
            const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash);
4401
0
            if (!pindex || !(pindex->nStatus & BLOCK_HAVE_DATA)) {
  Branch (4401:17): [True: 0, False: 0]
  Branch (4401:28): [True: 0, False: 0]
4402
0
                LogPrint(BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId());
4403
0
                return;
4404
0
            }
4405
4406
0
            if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) {
  Branch (4406:17): [True: 0, False: 0]
4407
0
                block_pos = pindex->GetBlockPos();
4408
0
            }
4409
0
        }
4410
4411
0
        if (!block_pos.IsNull()) {
  Branch (4411:13): [True: 0, False: 0]
4412
0
            CBlock block;
4413
0
            const bool ret{m_chainman.m_blockman.ReadBlockFromDisk(block, block_pos)};
4414
            // If height is above MAX_BLOCKTXN_DEPTH then this block cannot get
4415
            // pruned after we release cs_main above, so this read should never fail.
4416
0
            assert(ret);
4417
4418
0
            SendBlockTransactions(pfrom, *peer, block, req);
4419
0
            return;
4420
0
        }
4421
4422
        // If an older block is requested (should never happen in practice,
4423
        // but can happen in tests) send a block response instead of a
4424
        // blocktxn response. Sending a full block response instead of a
4425
        // small blocktxn response is preferable in the case where a peer
4426
        // might maliciously send lots of getblocktxn requests to trigger
4427
        // expensive disk reads, because it will require the peer to
4428
        // actually receive all the data read from disk over the network.
4429
0
        LogPrint(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
4430
0
        CInv inv{MSG_WITNESS_BLOCK, req.blockhash};
4431
0
        WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv));
4432
        // The message processing loop will go around again (without pausing) and we'll respond then
4433
0
        return;
4434
0
    }
4435
4436
0
    if (msg_type == NetMsgType::GETHEADERS) {
  Branch (4436:9): [True: 0, False: 0]
4437
0
        CBlockLocator locator;
4438
0
        uint256 hashStop;
4439
0
        vRecv >> locator >> hashStop;
4440
4441
0
        if (locator.vHave.size() > MAX_LOCATOR_SZ) {
  Branch (4441:13): [True: 0, False: 0]
4442
0
            LogPrint(BCLog::NET, "getheaders locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
4443
0
            pfrom.fDisconnect = true;
4444
0
            return;
4445
0
        }
4446
4447
0
        if (m_chainman.m_blockman.LoadingBlocks()) {
  Branch (4447:13): [True: 0, False: 0]
4448
0
            LogPrint(BCLog::NET, "Ignoring getheaders from peer=%d while importing/reindexing\n", pfrom.GetId());
4449
0
            return;
4450
0
        }
4451
4452
0
        LOCK(cs_main);
4453
4454
        // Note that if we were to be on a chain that forks from the checkpointed
4455
        // chain, then serving those headers to a peer that has seen the
4456
        // checkpointed chain would cause that peer to disconnect us. Requiring
4457
        // that our chainwork exceed the minimum chain work is a protection against
4458
        // being fed a bogus chain when we started up for the first time and
4459
        // getting partitioned off the honest network for serving that chain to
4460
        // others.
4461
0
        if (m_chainman.ActiveTip() == nullptr ||
  Branch (4461:13): [True: 0, False: 0]
4462
0
                (m_chainman.ActiveTip()->nChainWork < m_chainman.MinimumChainWork() && !pfrom.HasPermission(NetPermissionFlags::Download))) {
  Branch (4462:18): [True: 0, False: 0]
  Branch (4462:88): [True: 0, False: 0]
4463
0
            LogPrint(BCLog::NET, "Ignoring getheaders from peer=%d because active chain has too little work; sending empty response\n", pfrom.GetId());
4464
            // Just respond with an empty headers message, to tell the peer to
4465
            // go away but not treat us as unresponsive.
4466
0
            MakeAndPushMessage(pfrom, NetMsgType::HEADERS, std::vector<CBlockHeader>());
4467
0
            return;
4468
0
        }
4469
4470
0
        CNodeState *nodestate = State(pfrom.GetId());
4471
0
        const CBlockIndex* pindex = nullptr;
4472
0
        if (locator.IsNull())
  Branch (4472:13): [True: 0, False: 0]
4473
0
        {
4474
            // If locator is null, return the hashStop block
4475
0
            pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop);
4476
0
            if (!pindex) {
  Branch (4476:17): [True: 0, False: 0]
4477
0
                return;
4478
0
            }
4479
4480
0
            if (!BlockRequestAllowed(pindex)) {
  Branch (4480:17): [True: 0, False: 0]
4481
0
                LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old block header that isn't in the main chain\n", __func__, pfrom.GetId());
4482
0
                return;
4483
0
            }
4484
0
        }
4485
0
        else
4486
0
        {
4487
            // Find the last block the caller has in the main chain
4488
0
            pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4489
0
            if (pindex)
  Branch (4489:17): [True: 0, False: 0]
4490
0
                pindex = m_chainman.ActiveChain().Next(pindex);
4491
0
        }
4492
4493
        // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
4494
0
        std::vector<CBlock> vHeaders;
4495
0
        int nLimit = MAX_HEADERS_RESULTS;
4496
0
        LogPrint(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId());
4497
0
        for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
  Branch (4497:16): [True: 0, False: 0]
4498
0
        {
4499
0
            vHeaders.emplace_back(pindex->GetBlockHeader());
4500
0
            if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
  Branch (4500:17): [True: 0, False: 0]
  Branch (4500:17): [True: 0, False: 0]
  Branch (4500:34): [True: 0, False: 0]
4501
0
                break;
4502
0
        }
4503
        // pindex can be nullptr either if we sent m_chainman.ActiveChain().Tip() OR
4504
        // if our peer has m_chainman.ActiveChain().Tip() (and thus we are sending an empty
4505
        // headers message). In both cases it's safe to update
4506
        // pindexBestHeaderSent to be our tip.
4507
        //
4508
        // It is important that we simply reset the BestHeaderSent value here,
4509
        // and not max(BestHeaderSent, newHeaderSent). We might have announced
4510
        // the currently-being-connected tip using a compact block, which
4511
        // resulted in the peer sending a headers request, which we respond to
4512
        // without the new block. By resetting the BestHeaderSent, we ensure we
4513
        // will re-announce the new block via headers (or compact blocks again)
4514
        // in the SendMessages logic.
4515
0
        nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip();
  Branch (4515:43): [True: 0, False: 0]
4516
0
        MakeAndPushMessage(pfrom, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
4517
0
        return;
4518
0
    }
4519
4520
0
    if (msg_type == NetMsgType::TX) {
  Branch (4520:9): [True: 0, False: 0]
4521
0
        if (RejectIncomingTxs(pfrom)) {
  Branch (4521:13): [True: 0, False: 0]
4522
0
            LogPrint(BCLog::NET, "transaction sent in violation of protocol peer=%d\n", pfrom.GetId());
4523
0
            pfrom.fDisconnect = true;
4524
0
            return;
4525
0
        }
4526
4527
        // Stop processing the transaction early if we are still in IBD since we don't
4528
        // have enough information to validate it yet. Sending unsolicited transactions
4529
        // is not considered a protocol violation, so don't punish the peer.
4530
0
        if (m_chainman.IsInitialBlockDownload()) return;
  Branch (4530:13): [True: 0, False: 0]
4531
4532
0
        CTransactionRef ptx;
4533
0
        vRecv >> TX_WITH_WITNESS(ptx);
4534
0
        const CTransaction& tx = *ptx;
4535
4536
0
        const uint256& txid = ptx->GetHash();
4537
0
        const uint256& wtxid = ptx->GetWitnessHash();
4538
4539
0
        const uint256& hash = peer->m_wtxid_relay ? wtxid : txid;
  Branch (4539:31): [True: 0, False: 0]
4540
0
        AddKnownTx(*peer, hash);
4541
4542
0
        LOCK(cs_main);
4543
4544
0
        m_txrequest.ReceivedResponse(pfrom.GetId(), txid);
4545
0
        if (tx.HasWitness()) m_txrequest.ReceivedResponse(pfrom.GetId(), wtxid);
  Branch (4545:13): [True: 0, False: 0]
4546
4547
        // We do the AlreadyHaveTx() check using wtxid, rather than txid - in the
4548
        // absence of witness malleation, this is strictly better, because the
4549
        // recent rejects filter may contain the wtxid but rarely contains
4550
        // the txid of a segwit transaction that has been rejected.
4551
        // In the presence of witness malleation, it's possible that by only
4552
        // doing the check with wtxid, we could overlook a transaction which
4553
        // was confirmed with a different witness, or exists in our mempool
4554
        // with a different witness, but this has limited downside:
4555
        // mempool validation does its own lookup of whether we have the txid
4556
        // already; and an adversary can already relay us old transactions
4557
        // (older than our recency filter) if trying to DoS us, without any need
4558
        // for witness malleation.
4559
0
        if (AlreadyHaveTx(GenTxid::Wtxid(wtxid), /*include_reconsiderable=*/true)) {
  Branch (4559:13): [True: 0, False: 0]
4560
0
            if (pfrom.HasPermission(NetPermissionFlags::ForceRelay)) {
  Branch (4560:17): [True: 0, False: 0]
4561
                // Always relay transactions received from peers with forcerelay
4562
                // permission, even if they were already in the mempool, allowing
4563
                // the node to function as a gateway for nodes hidden behind it.
4564
0
                if (!m_mempool.exists(GenTxid::Txid(tx.GetHash()))) {
  Branch (4564:21): [True: 0, False: 0]
4565
0
                    LogPrintf("Not relaying non-mempool transaction %s (wtxid=%s) from forcerelay peer=%d\n",
4566
0
                              tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4567
0
                } else {
4568
0
                    LogPrintf("Force relaying tx %s (wtxid=%s) from peer=%d\n",
4569
0
                              tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4570
0
                    RelayTransaction(tx.GetHash(), tx.GetWitnessHash());
4571
0
                }
4572
0
            }
4573
4574
0
            if (RecentRejectsReconsiderableFilter().contains(wtxid)) {
  Branch (4574:17): [True: 0, False: 0]
4575
                // When a transaction is already in m_recent_rejects_reconsiderable, we shouldn't submit
4576
                // it by itself again. However, look for a matching child in the orphanage, as it is
4577
                // possible that they succeed as a package.
4578
0
                LogPrint(BCLog::TXPACKAGES, "found tx %s (wtxid=%s) in reconsiderable rejects, looking for child in orphanage\n",
4579
0
                         txid.ToString(), wtxid.ToString());
4580
0
                if (auto package_to_validate{Find1P1CPackage(ptx, pfrom.GetId())}) {
  Branch (4580:26): [True: 0, False: 0]
4581
0
                    const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4582
0
                    LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4583
0
                             package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4584
0
                    ProcessPackageResult(package_to_validate.value(), package_result);
4585
0
                }
4586
0
            }
4587
            // If a tx is detected by m_recent_rejects it is ignored. Because we haven't
4588
            // submitted the tx to our mempool, we won't have computed a DoS
4589
            // score for it or determined exactly why we consider it invalid.
4590
            //
4591
            // This means we won't penalize any peer subsequently relaying a DoSy
4592
            // tx (even if we penalized the first peer who gave it to us) because
4593
            // we have to account for m_recent_rejects showing false positives. In
4594
            // other words, we shouldn't penalize a peer if we aren't *sure* they
4595
            // submitted a DoSy tx.
4596
            //
4597
            // Note that m_recent_rejects doesn't just record DoSy or invalid
4598
            // transactions, but any tx not accepted by the mempool, which may be
4599
            // due to node policy (vs. consensus). So we can't blanket penalize a
4600
            // peer simply for relaying a tx that our m_recent_rejects has caught,
4601
            // regardless of false positives.
4602
0
            return;
4603
0
        }
4604
4605
0
        const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx);
4606
0
        const TxValidationState& state = result.m_state;
4607
4608
0
        if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) {
  Branch (4608:13): [True: 0, False: 0]
4609
0
            ProcessValidTx(pfrom.GetId(), ptx, result.m_replaced_transactions);
4610
0
            pfrom.m_last_tx_time = GetTime<std::chrono::seconds>();
4611
0
        }
4612
0
        else if (state.GetResult() == TxValidationResult::TX_MISSING_INPUTS)
  Branch (4612:18): [True: 0, False: 0]
4613
0
        {
4614
0
            bool fRejectedParents = false; // It may be the case that the orphans parents have all been rejected
4615
4616
            // Deduplicate parent txids, so that we don't have to loop over
4617
            // the same parent txid more than once down below.
4618
0
            std::vector<uint256> unique_parents;
4619
0
            unique_parents.reserve(tx.vin.size());
4620
0
            for (const CTxIn& txin : tx.vin) {
  Branch (4620:36): [True: 0, False: 0]
4621
                // We start with all parents, and then remove duplicates below.
4622
0
                unique_parents.push_back(txin.prevout.hash);
4623
0
            }
4624
0
            std::sort(unique_parents.begin(), unique_parents.end());
4625
0
            unique_parents.erase(std::unique(unique_parents.begin(), unique_parents.end()), unique_parents.end());
4626
4627
            // Distinguish between parents in m_recent_rejects and RecentRejectsReconsiderableFilter().
4628
            // We can tolerate having up to 1 parent in m_recent_rejects_reconsiderable since we
4629
            // submit 1p1c packages. However, fail immediately if any are in RecentRejectsFilter().
4630
0
            std::optional<uint256> rejected_parent_reconsiderable;
4631
0
            for (const uint256& parent_txid : unique_parents) {
  Branch (4631:45): [True: 0, False: 0]
4632
0
                if (RecentRejectsFilter().contains(parent_txid)) {
  Branch (4632:21): [True: 0, False: 0]
4633
0
                    fRejectedParents = true;
4634
0
                    break;
4635
0
                } else if (RecentRejectsReconsiderableFilter().contains(parent_txid) && !m_mempool.exists(GenTxid::Txid(parent_txid))) {
  Branch (4635:28): [True: 0, False: 0]
  Branch (4635:28): [True: 0, False: 0]
  Branch (4635:89): [True: 0, False: 0]
4636
                    // More than 1 parent in m_recent_rejects_reconsiderable: 1p1c will not be
4637
                    // sufficient to accept this package, so just give up here.
4638
0
                    if (rejected_parent_reconsiderable.has_value()) {
  Branch (4638:25): [True: 0, False: 0]
4639
0
                        fRejectedParents = true;
4640
0
                        break;
4641
0
                    }
4642
0
                    rejected_parent_reconsiderable = parent_txid;
4643
0
                }
4644
0
            }
4645
0
            if (!fRejectedParents) {
  Branch (4645:17): [True: 0, False: 0]
4646
0
                const auto current_time{GetTime<std::chrono::microseconds>()};
4647
4648
0
                for (const uint256& parent_txid : unique_parents) {
  Branch (4648:49): [True: 0, False: 0]
4649
                    // Here, we only have the txid (and not wtxid) of the
4650
                    // inputs, so we only request in txid mode, even for
4651
                    // wtxidrelay peers.
4652
                    // Eventually we should replace this with an improved
4653
                    // protocol for getting all unconfirmed parents.
4654
0
                    const auto gtxid{GenTxid::Txid(parent_txid)};
4655
0
                    AddKnownTx(*peer, parent_txid);
4656
                    // Exclude m_recent_rejects_reconsiderable: the missing parent may have been
4657
                    // previously rejected for being too low feerate. This orphan might CPFP it.
4658
0
                    if (!AlreadyHaveTx(gtxid, /*include_reconsiderable=*/false)) AddTxAnnouncement(pfrom, gtxid, current_time);
  Branch (4658:25): [True: 0, False: 0]
4659
0
                }
4660
4661
0
                if (m_orphanage.AddTx(ptx, pfrom.GetId())) {
  Branch (4661:21): [True: 0, False: 0]
4662
0
                    AddToCompactExtraTransactions(ptx);
4663
0
                }
4664
4665
                // Once added to the orphan pool, a tx is considered AlreadyHave, and we shouldn't request it anymore.
4666
0
                m_txrequest.ForgetTxHash(tx.GetHash());
4667
0
                m_txrequest.ForgetTxHash(tx.GetWitnessHash());
4668
4669
                // DoS prevention: do not allow m_orphanage to grow unbounded (see CVE-2012-3789)
4670
0
                m_orphanage.LimitOrphans(m_opts.max_orphan_txs, m_rng);
4671
0
            } else {
4672
0
                LogPrint(BCLog::MEMPOOL, "not keeping orphan with rejected parents %s (wtxid=%s)\n",
4673
0
                         tx.GetHash().ToString(),
4674
0
                         tx.GetWitnessHash().ToString());
4675
                // We will continue to reject this tx since it has rejected
4676
                // parents so avoid re-requesting it from other peers.
4677
                // Here we add both the txid and the wtxid, as we know that
4678
                // regardless of what witness is provided, we will not accept
4679
                // this, so we don't need to allow for redownload of this txid
4680
                // from any of our non-wtxidrelay peers.
4681
0
                RecentRejectsFilter().insert(tx.GetHash().ToUint256());
4682
0
                RecentRejectsFilter().insert(tx.GetWitnessHash().ToUint256());
4683
0
                m_txrequest.ForgetTxHash(tx.GetHash());
4684
0
                m_txrequest.ForgetTxHash(tx.GetWitnessHash());
4685
0
            }
4686
0
        }
4687
0
        if (state.IsInvalid()) {
  Branch (4687:13): [True: 0, False: 0]
4688
0
            ProcessInvalidTx(pfrom.GetId(), ptx, state, /*maybe_add_extra_compact_tx=*/true);
4689
0
        }
4690
        // When a transaction fails for TX_RECONSIDERABLE, look for a matching child in the
4691
        // orphanage, as it is possible that they succeed as a package.
4692
0
        if (state.GetResult() == TxValidationResult::TX_RECONSIDERABLE) {
  Branch (4692:13): [True: 0, False: 0]
4693
0
            LogPrint(BCLog::TXPACKAGES, "tx %s (wtxid=%s) failed but reconsiderable, looking for child in orphanage\n",
4694
0
                     txid.ToString(), wtxid.ToString());
4695
0
            if (auto package_to_validate{Find1P1CPackage(ptx, pfrom.GetId())}) {
  Branch (4695:22): [True: 0, False: 0]
4696
0
                const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4697
0
                LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4698
0
                         package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4699
0
                ProcessPackageResult(package_to_validate.value(), package_result);
4700
0
            }
4701
0
        }
4702
4703
0
        return;
4704
0
    }
4705
4706
0
    if (msg_type == NetMsgType::CMPCTBLOCK)
  Branch (4706:9): [True: 0, False: 0]
4707
0
    {
4708
        // Ignore cmpctblock received while importing
4709
0
        if (m_chainman.m_blockman.LoadingBlocks()) {
  Branch (4709:13): [True: 0, False: 0]
4710
0
            LogPrint(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId());
4711
0
            return;
4712
0
        }
4713
4714
0
        CBlockHeaderAndShortTxIDs cmpctblock;
4715
0
        vRecv >> cmpctblock;
4716
4717
0
        bool received_new_header = false;
4718
0
        const auto blockhash = cmpctblock.header.GetHash();
4719
4720
0
        {
4721
0
        LOCK(cs_main);
4722
4723
0
        const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock);
4724
0
        if (!prev_block) {
  Branch (4724:13): [True: 0, False: 0]
4725
            // Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers
4726
0
            if (!m_chainman.IsInitialBlockDownload()) {
  Branch (4726:17): [True: 0, False: 0]
4727
0
                MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer);
4728
0
            }
4729
0
            return;
4730
0
        } else if (prev_block->nChainWork + CalculateClaimedHeadersWork({cmpctblock.header}) < GetAntiDoSWorkThreshold()) {
  Branch (4730:20): [True: 0, False: 0]
4731
            // If we get a low-work header in a compact block, we can ignore it.
4732
0
            LogPrint(BCLog::NET, "Ignoring low-work compact block from peer %d\n", pfrom.GetId());
4733
0
            return;
4734
0
        }
4735
4736
0
        if (!m_chainman.m_blockman.LookupBlockIndex(blockhash)) {
  Branch (4736:13): [True: 0, False: 0]
4737
0
            received_new_header = true;
4738
0
        }
4739
0
        }
4740
4741
0
        const CBlockIndex *pindex = nullptr;
4742
0
        BlockValidationState state;
4743
0
        if (!m_chainman.ProcessNewBlockHeaders({cmpctblock.header}, /*min_pow_checked=*/true, state, &pindex)) {
  Branch (4743:13): [True: 0, False: 0]
4744
0
            if (state.IsInvalid()) {
  Branch (4744:17): [True: 0, False: 0]
4745
0
                MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block=*/true, "invalid header via cmpctblock");
4746
0
                return;
4747
0
            }
4748
0
        }
4749
4750
0
        if (received_new_header) {
  Branch (4750:13): [True: 0, False: 0]
4751
0
            LogInfo("Saw new cmpctblock header hash=%s peer=%d\n",
4752
0
                blockhash.ToString(), pfrom.GetId());
4753
0
        }
4754
4755
0
        bool fProcessBLOCKTXN = false;
4756
4757
        // If we end up treating this as a plain headers message, call that as well
4758
        // without cs_main.
4759
0
        bool fRevertToHeaderProcessing = false;
4760
4761
        // Keep a CBlock for "optimistic" compactblock reconstructions (see
4762
        // below)
4763
0
        std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4764
0
        bool fBlockReconstructed = false;
4765
4766
0
        {
4767
0
        LOCK(cs_main);
4768
        // If AcceptBlockHeader returned true, it set pindex
4769
0
        assert(pindex);
4770
0
        UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
4771
4772
0
        CNodeState *nodestate = State(pfrom.GetId());
4773
4774
        // If this was a new header with more work than our tip, update the
4775
        // peer's last block announcement time
4776
0
        if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
  Branch (4776:13): [True: 0, False: 0]
  Branch (4776:36): [True: 0, False: 0]
4777
0
            nodestate->m_last_block_announcement = GetTime();
4778
0
        }
4779
4780
0
        if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here
  Branch (4780:13): [True: 0, False: 0]
4781
0
            return;
4782
4783
0
        auto range_flight = mapBlocksInFlight.equal_range(pindex->GetBlockHash());
4784
0
        size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
4785
0
        bool requested_block_from_this_peer{false};
4786
4787
        // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
4788
0
        bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
  Branch (4788:32): [True: 0, False: 0]
  Branch (4788:58): [True: 0, False: 0]
4789
4790
0
        while (range_flight.first != range_flight.second) {
  Branch (4790:16): [True: 0, False: 0]
4791
0
            if (range_flight.first->second.first == pfrom.GetId()) {
  Branch (4791:17): [True: 0, False: 0]
4792
0
                requested_block_from_this_peer = true;
4793
0
                break;
4794
0
            }
4795
0
            range_flight.first++;
4796
0
        }
4797
4798
0
        if (pindex->nChainWork <= m_chainman.ActiveChain().Tip()->nChainWork || // We know something better
  Branch (4798:13): [True: 0, False: 0]
4799
0
                pindex->nTx != 0) { // We had this block at some point, but pruned it
  Branch (4799:17): [True: 0, False: 0]
4800
0
            if (requested_block_from_this_peer) {
  Branch (4800:17): [True: 0, False: 0]
4801
                // We requested this block for some reason, but our mempool will probably be useless
4802
                // so we just grab the block via normal getdata
4803
0
                std::vector<CInv> vInv(1);
4804
0
                vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4805
0
                MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4806
0
            }
4807
0
            return;
4808
0
        }
4809
4810
        // If we're not close to tip yet, give up and let parallel block fetch work its magic
4811
0
        if (!already_in_flight && !CanDirectFetch()) {
  Branch (4811:13): [True: 0, False: 0]
  Branch (4811:35): [True: 0, False: 0]
4812
0
            return;
4813
0
        }
4814
4815
        // We want to be a bit conservative just to be extra careful about DoS
4816
        // possibilities in compact block processing...
4817
0
        if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) {
  Branch (4817:13): [True: 0, False: 0]
4818
0
            if ((already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK && nodestate->vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
  Branch (4818:18): [True: 0, False: 0]
  Branch (4818:76): [True: 0, False: 0]
4819
0
                 requested_block_from_this_peer) {
  Branch (4819:18): [True: 0, False: 0]
4820
0
                std::list<QueuedBlock>::iterator* queuedBlockIt = nullptr;
4821
0
                if (!BlockRequested(pfrom.GetId(), *pindex, &queuedBlockIt)) {
  Branch (4821:21): [True: 0, False: 0]
4822
0
                    if (!(*queuedBlockIt)->partialBlock)
  Branch (4822:25): [True: 0, False: 0]
4823
0
                        (*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&m_mempool));
4824
0
                    else {
4825
                        // The block was already in flight using compact blocks from the same peer
4826
0
                        LogPrint(BCLog::NET, "Peer sent us compact block we were already syncing!\n");
4827
0
                        return;
4828
0
                    }
4829
0
                }
4830
4831
0
                PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock;
4832
0
                ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
4833
0
                if (status == READ_STATUS_INVALID) {
  Branch (4833:21): [True: 0, False: 0]
4834
0
                    RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
4835
0
                    Misbehaving(*peer, "invalid compact block");
4836
0
                    return;
4837
0
                } else if (status == READ_STATUS_FAILED) {
  Branch (4837:28): [True: 0, False: 0]
4838
0
                    if (first_in_flight)  {
  Branch (4838:25): [True: 0, False: 0]
4839
                        // Duplicate txindexes, the block is now in-flight, so just request it
4840
0
                        std::vector<CInv> vInv(1);
4841
0
                        vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4842
0
                        MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4843
0
                    } else {
4844
                        // Give up for this peer and wait for other peer(s)
4845
0
                        RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4846
0
                    }
4847
0
                    return;
4848
0
                }
4849
4850
0
                BlockTransactionsRequest req;
4851
0
                for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
  Branch (4851:36): [True: 0, False: 0]
4852
0
                    if (!partialBlock.IsTxAvailable(i))
  Branch (4852:25): [True: 0, False: 0]
4853
0
                        req.indexes.push_back(i);
4854
0
                }
4855
0
                if (req.indexes.empty()) {
  Branch (4855:21): [True: 0, False: 0]
4856
0
                    fProcessBLOCKTXN = true;
4857
0
                } else if (first_in_flight) {
  Branch (4857:28): [True: 0, False: 0]
4858
                    // We will try to round-trip any compact blocks we get on failure,
4859
                    // as long as it's first...
4860
0
                    req.blockhash = pindex->GetBlockHash();
4861
0
                    MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4862
0
                } else if (pfrom.m_bip152_highbandwidth_to &&
  Branch (4862:28): [True: 0, False: 0]
4863
0
                    (!pfrom.IsInboundConn() ||
  Branch (4863:22): [True: 0, False: 0]
4864
0
                    IsBlockRequestedFromOutbound(blockhash) ||
  Branch (4864:21): [True: 0, False: 0]
4865
0
                    already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK - 1)) {
  Branch (4865:21): [True: 0, False: 0]
4866
                    // ... or it's a hb relay peer and:
4867
                    // - peer is outbound, or
4868
                    // - we already have an outbound attempt in flight(so we'll take what we can get), or
4869
                    // - it's not the final parallel download slot (which we may reserve for first outbound)
4870
0
                    req.blockhash = pindex->GetBlockHash();
4871
0
                    MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4872
0
                } else {
4873
                    // Give up for this peer and wait for other peer(s)
4874
0
                    RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4875
0
                }
4876
0
            } else {
4877
                // This block is either already in flight from a different
4878
                // peer, or this peer has too many blocks outstanding to
4879
                // download from.
4880
                // Optimistically try to reconstruct anyway since we might be
4881
                // able to without any round trips.
4882
0
                PartiallyDownloadedBlock tempBlock(&m_mempool);
4883
0
                ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
4884
0
                if (status != READ_STATUS_OK) {
  Branch (4884:21): [True: 0, False: 0]
4885
                    // TODO: don't ignore failures
4886
0
                    return;
4887
0
                }
4888
0
                std::vector<CTransactionRef> dummy;
4889
0
                status = tempBlock.FillBlock(*pblock, dummy);
4890
0
                if (status == READ_STATUS_OK) {
  Branch (4890:21): [True: 0, False: 0]
4891
0
                    fBlockReconstructed = true;
4892
0
                }
4893
0
            }
4894
0
        } else {
4895
0
            if (requested_block_from_this_peer) {
  Branch (4895:17): [True: 0, False: 0]
4896
                // We requested this block, but its far into the future, so our
4897
                // mempool will probably be useless - request the block normally
4898
0
                std::vector<CInv> vInv(1);
4899
0
                vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4900
0
                MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4901
0
                return;
4902
0
            } else {
4903
                // If this was an announce-cmpctblock, we want the same treatment as a header message
4904
0
                fRevertToHeaderProcessing = true;
4905
0
            }
4906
0
        }
4907
0
        } // cs_main
4908
4909
0
        if (fProcessBLOCKTXN) {
  Branch (4909:13): [True: 0, False: 0]
4910
0
            BlockTransactions txn;
4911
0
            txn.blockhash = blockhash;
4912
0
            return ProcessCompactBlockTxns(pfrom, *peer, txn);
4913
0
        }
4914
4915
0
        if (fRevertToHeaderProcessing) {
  Branch (4915:13): [True: 0, False: 0]
4916
            // Headers received from HB compact block peers are permitted to be
4917
            // relayed before full validation (see BIP 152), so we don't want to disconnect
4918
            // the peer if the header turns out to be for an invalid block.
4919
            // Note that if a peer tries to build on an invalid chain, that
4920
            // will be detected and the peer will be disconnected/discouraged.
4921
0
            return ProcessHeadersMessage(pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true);
4922
0
        }
4923
4924
0
        if (fBlockReconstructed) {
  Branch (4924:13): [True: 0, False: 0]
4925
            // If we got here, we were able to optimistically reconstruct a
4926
            // block that is in flight from some other peer.
4927
0
            {
4928
0
                LOCK(cs_main);
4929
0
                mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false));
4930
0
            }
4931
            // Setting force_processing to true means that we bypass some of
4932
            // our anti-DoS protections in AcceptBlock, which filters
4933
            // unrequested blocks that might be trying to waste our resources
4934
            // (eg disk space). Because we only try to reconstruct blocks when
4935
            // we're close to caught up (via the CanDirectFetch() requirement
4936
            // above, combined with the behavior of not requesting blocks until
4937
            // we have a chain with at least the minimum chain work), and we ignore
4938
            // compact blocks with less work than our tip, it is safe to treat
4939
            // reconstructed compact blocks as having been requested.
4940
0
            ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
4941
0
            LOCK(cs_main); // hold cs_main for CBlockIndex::IsValid()
4942
0
            if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS)) {
  Branch (4942:17): [True: 0, False: 0]
4943
                // Clear download state for this block, which is in
4944
                // process from some other peer.  We do this after calling
4945
                // ProcessNewBlock so that a malleated cmpctblock announcement
4946
                // can't be used to interfere with block relay.
4947
0
                RemoveBlockRequest(pblock->GetHash(), std::nullopt);
4948
0
            }
4949
0
        }
4950
0
        return;
4951
0
    }
4952
4953
0
    if (msg_type == NetMsgType::BLOCKTXN)
  Branch (4953:9): [True: 0, False: 0]
4954
0
    {
4955
        // Ignore blocktxn received while importing
4956
0
        if (m_chainman.m_blockman.LoadingBlocks()) {
  Branch (4956:13): [True: 0, False: 0]
4957
0
            LogPrint(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId());
4958
0
            return;
4959
0
        }
4960
4961
0
        BlockTransactions resp;
4962
0
        vRecv >> resp;
4963
4964
0
        return ProcessCompactBlockTxns(pfrom, *peer, resp);
4965
0
    }
4966
4967
0
    if (msg_type == NetMsgType::HEADERS)
  Branch (4967:9): [True: 0, False: 0]
4968
0
    {
4969
        // Ignore headers received while importing
4970
0
        if (m_chainman.m_blockman.LoadingBlocks()) {
  Branch (4970:13): [True: 0, False: 0]
4971
0
            LogPrint(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId());
4972
0
            return;
4973
0
        }
4974
4975
0
        std::vector<CBlockHeader> headers;
4976
4977
        // Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
4978
0
        unsigned int nCount = ReadCompactSize(vRecv);
4979
0
        if (nCount > MAX_HEADERS_RESULTS) {
  Branch (4979:13): [True: 0, False: 0]
4980
0
            Misbehaving(*peer, strprintf("headers message size = %u", nCount));
4981
0
            return;
4982
0
        }
4983
0
        headers.resize(nCount);
4984
0
        for (unsigned int n = 0; n < nCount; n++) {
  Branch (4984:34): [True: 0, False: 0]
4985
0
            vRecv >> headers[n];
4986
0
            ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
4987
0
        }
4988
4989
0
        ProcessHeadersMessage(pfrom, *peer, std::move(headers), /*via_compact_block=*/false);
4990
4991
        // Check if the headers presync progress needs to be reported to validation.
4992
        // This needs to be done without holding the m_headers_presync_mutex lock.
4993
0
        if (m_headers_presync_should_signal.exchange(false)) {
  Branch (4993:13): [True: 0, False: 0]
4994
0
            HeadersPresyncStats stats;
4995
0
            {
4996
0
                LOCK(m_headers_presync_mutex);
4997
0
                auto it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
4998
0
                if (it != m_headers_presync_stats.end()) stats = it->second;
  Branch (4998:21): [True: 0, False: 0]
4999
0
            }
5000
0
            if (stats.second) {
  Branch (5000:17): [True: 0, False: 0]
5001
0
                m_chainman.ReportHeadersPresync(stats.first, stats.second->first, stats.second->second);
5002
0
            }
5003
0
        }
5004
5005
0
        return;
5006
0
    }
5007
5008
0
    if (msg_type == NetMsgType::BLOCK)
  Branch (5008:9): [True: 0, False: 0]
5009
0
    {
5010
        // Ignore block received while importing
5011
0
        if (m_chainman.m_blockman.LoadingBlocks()) {
  Branch (5011:13): [True: 0, False: 0]
5012
0
            LogPrint(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId());
5013
0
            return;
5014
0
        }
5015
5016
0
        std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
5017
0
        vRecv >> TX_WITH_WITNESS(*pblock);
5018
5019
0
        LogPrint(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId());
5020
5021
0
        const CBlockIndex* prev_block{WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.LookupBlockIndex(pblock->hashPrevBlock))};
5022
5023
        // Check for possible mutation if it connects to something we know so we can check for DEPLOYMENT_SEGWIT being active
5024
0
        if (prev_block && IsBlockMutated(/*block=*/*pblock,
  Branch (5024:13): [True: 0, False: 0]
  Branch (5024:27): [True: 0, False: 0]
5025
0
                           /*check_witness_root=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT))) {
5026
0
            LogDebug(BCLog::NET, "Received mutated block from peer=%d\n", peer->m_id);
5027
0
            Misbehaving(*peer, "mutated block");
5028
0
            WITH_LOCK(cs_main, RemoveBlockRequest(pblock->GetHash(), peer->m_id));
5029
0
            return;
5030
0
        }
5031
5032
0
        bool forceProcessing = false;
5033
0
        const uint256 hash(pblock->GetHash());
5034
0
        bool min_pow_checked = false;
5035
0
        {
5036
0
            LOCK(cs_main);
5037
            // Always process the block if we requested it, since we may
5038
            // need it even when it's not a candidate for a new best tip.
5039
0
            forceProcessing = IsBlockRequested(hash);
5040
0
            RemoveBlockRequest(hash, pfrom.GetId());
5041
            // mapBlockSource is only used for punishing peers and setting
5042
            // which peers send us compact blocks, so the race between here and
5043
            // cs_main in ProcessNewBlock is fine.
5044
0
            mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
5045
5046
            // Check claimed work on this block against our anti-dos thresholds.
5047
0
            if (prev_block && prev_block->nChainWork + CalculateClaimedHeadersWork({pblock->GetBlockHeader()}) >= GetAntiDoSWorkThreshold()) {
  Branch (5047:17): [True: 0, False: 0]
  Branch (5047:17): [True: 0, False: 0]
  Branch (5047:31): [True: 0, False: 0]
5048
0
                min_pow_checked = true;
5049
0
            }
5050
0
        }
5051
0
        ProcessBlock(pfrom, pblock, forceProcessing, min_pow_checked);
5052
0
        return;
5053
0
    }
5054
5055
0
    if (msg_type == NetMsgType::GETADDR) {
  Branch (5055:9): [True: 0, False: 0]
5056
        // This asymmetric behavior for inbound and outbound connections was introduced
5057
        // to prevent a fingerprinting attack: an attacker can send specific fake addresses
5058
        // to users' AddrMan and later request them by sending getaddr messages.
5059
        // Making nodes which are behind NAT and can only make outgoing connections ignore
5060
        // the getaddr message mitigates the attack.
5061
0
        if (!pfrom.IsInboundConn()) {
  Branch (5061:13): [True: 0, False: 0]
5062
0
            LogPrint(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId());
5063
0
            return;
5064
0
        }
5065
5066
        // Since this must be an inbound connection, SetupAddressRelay will
5067
        // never fail.
5068
0
        Assume(SetupAddressRelay(pfrom, *peer));
5069
5070
        // Only send one GetAddr response per connection to reduce resource waste
5071
        // and discourage addr stamping of INV announcements.
5072
0
        if (peer->m_getaddr_recvd) {
  Branch (5072:13): [True: 0, False: 0]
5073
0
            LogPrint(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId());
5074
0
            return;
5075
0
        }
5076
0
        peer->m_getaddr_recvd = true;
5077
5078
0
        peer->m_addrs_to_send.clear();
5079
0
        std::vector<CAddress> vAddr;
5080
0
        if (pfrom.HasPermission(NetPermissionFlags::Addr)) {
  Branch (5080:13): [True: 0, False: 0]
5081
0
            vAddr = m_connman.GetAddresses(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND, /*network=*/std::nullopt);
5082
0
        } else {
5083
0
            vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND);
5084
0
        }
5085
0
        for (const CAddress &addr : vAddr) {
  Branch (5085:35): [True: 0, False: 0]
5086
0
            PushAddress(*peer, addr);
5087
0
        }
5088
0
        return;
5089
0
    }
5090
5091
0
    if (msg_type == NetMsgType::MEMPOOL) {
  Branch (5091:9): [True: 0, False: 0]
5092
        // Only process received mempool messages if we advertise NODE_BLOOM
5093
        // or if the peer has mempool permissions.
5094
0
        if (!(peer->m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
  Branch (5094:13): [True: 0, False: 0]
  Branch (5094:53): [True: 0, False: 0]
5095
0
        {
5096
0
            if (!pfrom.HasPermission(NetPermissionFlags::NoBan))
  Branch (5096:17): [True: 0, False: 0]
5097
0
            {
5098
0
                LogPrint(BCLog::NET, "mempool request with bloom filters disabled, disconnect peer=%d\n", pfrom.GetId());
5099
0
                pfrom.fDisconnect = true;
5100
0
            }
5101
0
            return;
5102
0
        }
5103
5104
0
        if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
  Branch (5104:13): [True: 0, False: 0]
  Branch (5104:55): [True: 0, False: 0]
5105
0
        {
5106
0
            if (!pfrom.HasPermission(NetPermissionFlags::NoBan))
  Branch (5106:17): [True: 0, False: 0]
5107
0
            {
5108
0
                LogPrint(BCLog::NET, "mempool request with bandwidth limit reached, disconnect peer=%d\n", pfrom.GetId());
5109
0
                pfrom.fDisconnect = true;
5110
0
            }
5111
0
            return;
5112
0
        }
5113
5114
0
        if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
  Branch (5114:49): [True: 0, False: 0]
5115
0
            LOCK(tx_relay->m_tx_inventory_mutex);
5116
0
            tx_relay->m_send_mempool = true;
5117
0
        }
5118
0
        return;
5119
0
    }
5120
5121
0
    if (msg_type == NetMsgType::PING) {
  Branch (5121:9): [True: 0, False: 0]
5122
0
        if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
  Branch (5122:13): [True: 0, False: 0]
5123
0
            uint64_t nonce = 0;
5124
0
            vRecv >> nonce;
5125
            // Echo the message back with the nonce. This allows for two useful features:
5126
            //
5127
            // 1) A remote node can quickly check if the connection is operational
5128
            // 2) Remote nodes can measure the latency of the network thread. If this node
5129
            //    is overloaded it won't respond to pings quickly and the remote node can
5130
            //    avoid sending us more work, like chain download requests.
5131
            //
5132
            // The nonce stops the remote getting confused between different pings: without
5133
            // it, if the remote node sends a ping once per second and this node takes 5
5134
            // seconds to respond to each, the 5th ping the remote sends would appear to
5135
            // return very quickly.
5136
0
            MakeAndPushMessage(pfrom, NetMsgType::PONG, nonce);
5137
0
        }
5138
0
        return;
5139
0
    }
5140
5141
0
    if (msg_type == NetMsgType::PONG) {
  Branch (5141:9): [True: 0, False: 0]
5142
0
        const auto ping_end = time_received;
5143
0
        uint64_t nonce = 0;
5144
0
        size_t nAvail = vRecv.in_avail();
5145
0
        bool bPingFinished = false;
5146
0
        std::string sProblem;
5147
5148
0
        if (nAvail >= sizeof(nonce)) {
  Branch (5148:13): [True: 0, False: 0]
5149
0
            vRecv >> nonce;
5150
5151
            // Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
5152
0
            if (peer->m_ping_nonce_sent != 0) {
  Branch (5152:17): [True: 0, False: 0]
5153
0
                if (nonce == peer->m_ping_nonce_sent) {
  Branch (5153:21): [True: 0, False: 0]
5154
                    // Matching pong received, this ping is no longer outstanding
5155
0
                    bPingFinished = true;
5156
0
                    const auto ping_time = ping_end - peer->m_ping_start.load();
5157
0
                    if (ping_time.count() >= 0) {
  Branch (5157:25): [True: 0, False: 0]
5158
                        // Let connman know about this successful ping-pong
5159
0
                        pfrom.PongReceived(ping_time);
5160
0
                    } else {
5161
                        // This should never happen
5162
0
                        sProblem = "Timing mishap";
5163
0
                    }
5164
0
                } else {
5165
                    // Nonce mismatches are normal when pings are overlapping
5166
0
                    sProblem = "Nonce mismatch";
5167
0
                    if (nonce == 0) {
  Branch (5167:25): [True: 0, False: 0]
5168
                        // This is most likely a bug in another implementation somewhere; cancel this ping
5169
0
                        bPingFinished = true;
5170
0
                        sProblem = "Nonce zero";
5171
0
                    }
5172
0
                }
5173
0
            } else {
5174
0
                sProblem = "Unsolicited pong without ping";
5175
0
            }
5176
0
        } else {
5177
            // This is most likely a bug in another implementation somewhere; cancel this ping
5178
0
            bPingFinished = true;
5179
0
            sProblem = "Short payload";
5180
0
        }
5181
5182
0
        if (!(sProblem.empty())) {
  Branch (5182:13): [True: 0, False: 0]
5183
0
            LogPrint(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
5184
0
                pfrom.GetId(),
5185
0
                sProblem,
5186
0
                peer->m_ping_nonce_sent,
5187
0
                nonce,
5188
0
                nAvail);
5189
0
        }
5190
0
        if (bPingFinished) {
  Branch (5190:13): [True: 0, False: 0]
5191
0
            peer->m_ping_nonce_sent = 0;
5192
0
        }
5193
0
        return;
5194
0
    }
5195
5196
0
    if (msg_type == NetMsgType::FILTERLOAD) {
  Branch (5196:9): [True: 0, False: 0]
5197
0
        if (!(peer->m_our_services & NODE_BLOOM)) {
  Branch (5197:13): [True: 0, False: 0]
5198
0
            LogPrint(BCLog::NET, "filterload received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
5199
0
            pfrom.fDisconnect = true;
5200
0
            return;
5201
0
        }
5202
0
        CBloomFilter filter;
5203
0
        vRecv >> filter;
5204
5205
0
        if (!filter.IsWithinSizeConstraints())
  Branch (5205:13): [True: 0, False: 0]
5206
0
        {
5207
            // There is no excuse for sending a too-large filter
5208
0
            Misbehaving(*peer, "too-large bloom filter");
5209
0
        } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
  Branch (5209:56): [True: 0, False: 0]
5210
0
            {
5211
0
                LOCK(tx_relay->m_bloom_filter_mutex);
5212
0
                tx_relay->m_bloom_filter.reset(new CBloomFilter(filter));
5213
0
                tx_relay->m_relay_txs = true;
5214
0
            }
5215
0
            pfrom.m_bloom_filter_loaded = true;
5216
0
            pfrom.m_relays_txs = true;
5217
0
        }
5218
0
        return;
5219
0
    }
5220
5221
0
    if (msg_type == NetMsgType::FILTERADD) {
  Branch (5221:9): [True: 0, False: 0]
5222
0
        if (!(peer->m_our_services & NODE_BLOOM)) {
  Branch (5222:13): [True: 0, False: 0]
5223
0
            LogPrint(BCLog::NET, "filteradd received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
5224
0
            pfrom.fDisconnect = true;
5225
0
            return;
5226
0
        }
5227
0
        std::vector<unsigned char> vData;
5228
0
        vRecv >> vData;
5229
5230
        // Nodes must NEVER send a data item > MAX_SCRIPT_ELEMENT_SIZE bytes (the max size for a script data object,
5231
        // and thus, the maximum size any matched object can have) in a filteradd message
5232
0
        bool bad = false;
5233
0
        if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
  Branch (5233:13): [True: 0, False: 0]
5234
0
            bad = true;
5235
0
        } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
  Branch (5235:56): [True: 0, False: 0]
5236
0
            LOCK(tx_relay->m_bloom_filter_mutex);
5237
0
            if (tx_relay->m_bloom_filter) {
  Branch (5237:17): [True: 0, False: 0]
5238
0
                tx_relay->m_bloom_filter->insert(vData);
5239
0
            } else {
5240
0
                bad = true;
5241
0
            }
5242
0
        }
5243
0
        if (bad) {
  Branch (5243:13): [True: 0, False: 0]
5244
0
            Misbehaving(*peer, "bad filteradd message");
5245
0
        }
5246
0
        return;
5247
0
    }
5248
5249
0
    if (msg_type == NetMsgType::FILTERCLEAR) {
  Branch (5249:9): [True: 0, False: 0]
5250
0
        if (!(peer->m_our_services & NODE_BLOOM)) {
  Branch (5250:13): [True: 0, False: 0]
5251
0
            LogPrint(BCLog::NET, "filterclear received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
5252
0
            pfrom.fDisconnect = true;
5253
0
            return;
5254
0
        }
5255
0
        auto tx_relay = peer->GetTxRelay();
5256
0
        if (!tx_relay) return;
  Branch (5256:13): [True: 0, False: 0]
5257
5258
0
        {
5259
0
            LOCK(tx_relay->m_bloom_filter_mutex);
5260
0
            tx_relay->m_bloom_filter = nullptr;
5261
0
            tx_relay->m_relay_txs = true;
5262
0
        }
5263
0
        pfrom.m_bloom_filter_loaded = false;
5264
0
        pfrom.m_relays_txs = true;
5265
0
        return;
5266
0
    }
5267
5268
0
    if (msg_type == NetMsgType::FEEFILTER) {
  Branch (5268:9): [True: 0, False: 0]
5269
0
        CAmount newFeeFilter = 0;
5270
0
        vRecv >> newFeeFilter;
5271
0
        if (MoneyRange(newFeeFilter)) {
  Branch (5271:13): [True: 0, False: 0]
5272
0
            if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
  Branch (5272:53): [True: 0, False: 0]
5273
0
                tx_relay->m_fee_filter_received = newFeeFilter;
5274
0
            }
5275
0
            LogPrint(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
5276
0
        }
5277
0
        return;
5278
0
    }
5279
5280
0
    if (msg_type == NetMsgType::GETCFILTERS) {
  Branch (5280:9): [True: 0, False: 0]
5281
0
        ProcessGetCFilters(pfrom, *peer, vRecv);
5282
0
        return;
5283
0
    }
5284
5285
0
    if (msg_type == NetMsgType::GETCFHEADERS) {
  Branch (5285:9): [True: 0, False: 0]
5286
0
        ProcessGetCFHeaders(pfrom, *peer, vRecv);
5287
0
        return;
5288
0
    }
5289
5290
0
    if (msg_type == NetMsgType::GETCFCHECKPT) {
  Branch (5290:9): [True: 0, False: 0]
5291
0
        ProcessGetCFCheckPt(pfrom, *peer, vRecv);
5292
0
        return;
5293
0
    }
5294
5295
0
    if (msg_type == NetMsgType::NOTFOUND) {
  Branch (5295:9): [True: 0, False: 0]
5296
0
        std::vector<CInv> vInv;
5297
0
        vRecv >> vInv;
5298
0
        if (vInv.size() <= MAX_PEER_TX_ANNOUNCEMENTS + MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
  Branch (5298:13): [True: 0, False: 0]
5299
0
            LOCK(::cs_main);
5300
0
            for (CInv &inv : vInv) {
  Branch (5300:28): [True: 0, False: 0]
5301
0
                if (inv.IsGenTxMsg()) {
  Branch (5301:21): [True: 0, False: 0]
5302
                    // If we receive a NOTFOUND message for a tx we requested, mark the announcement for it as
5303
                    // completed in TxRequestTracker.
5304
0
                    m_txrequest.ReceivedResponse(pfrom.GetId(), inv.hash);
5305
0
                }
5306
0
            }
5307
0
        }
5308
0
        return;
5309
0
    }
5310
5311
    // Ignore unknown commands for extensibility
5312
0
    LogPrint(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
5313
0
    return;
5314
0
}
5315
5316
bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer)
5317
5.64k
{
5318
5.64k
    {
5319
5.64k
        LOCK(peer.m_misbehavior_mutex);
5320
5321
        // There's nothing to do if the m_should_discourage flag isn't set
5322
5.64k
        if (!peer.m_should_discourage) return false;
  Branch (5322:13): [True: 5.64k, False: 0]
5323
5324
0
        peer.m_should_discourage = false;
5325
0
    } // peer.m_misbehavior_mutex
5326
5327
0
    if (pnode.HasPermission(NetPermissionFlags::NoBan)) {
  Branch (5327:9): [True: 0, False: 0]
5328
        // We never disconnect or discourage peers for bad behavior if they have NetPermissionFlags::NoBan permission
5329
0
        LogPrintf("Warning: not punishing noban peer %d!\n", peer.m_id);
5330
0
        return false;
5331
0
    }
5332
5333
0
    if (pnode.IsManualConn()) {
  Branch (5333:9): [True: 0, False: 0]
5334
        // We never disconnect or discourage manual peers for bad behavior
5335
0
        LogPrintf("Warning: not punishing manually connected peer %d!\n", peer.m_id);
5336
0
        return false;
5337
0
    }
5338
5339
0
    if (pnode.addr.IsLocal()) {
  Branch (5339:9): [True: 0, False: 0]
5340
        // We disconnect local peers for bad behavior but don't discourage (since that would discourage
5341
        // all peers on the same local address)
5342
0
        LogPrint(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n",
5343
0
                 pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id);
5344
0
        pnode.fDisconnect = true;
5345
0
        return true;
5346
0
    }
5347
5348
    // Normal case: Disconnect the peer and discourage all nodes sharing the address
5349
0
    LogPrint(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id);
5350
0
    if (m_banman) m_banman->Discourage(pnode.addr);
  Branch (5350:9): [True: 0, False: 0]
5351
0
    m_connman.DisconnectNode(pnode.addr);
5352
0
    return true;
5353
0
}
5354
5355
bool PeerManagerImpl::ProcessMessages(CNode* pfrom, std::atomic<bool>& interruptMsgProc)
5356
5.64k
{
5357
5.64k
    AssertLockHeld(g_msgproc_mutex);
5358
5359
5.64k
    PeerRef peer = GetPeerRef(pfrom->GetId());
5360
5.64k
    if (peer == nullptr) return false;
  Branch (5360:9): [True: 0, False: 5.64k]
5361
5362
5.64k
    {
5363
5.64k
        LOCK(peer->m_getdata_requests_mutex);
5364
5.64k
        if (!peer->m_getdata_requests.empty()) {
  Branch (5364:13): [True: 0, False: 5.64k]
5365
0
            ProcessGetData(*pfrom, *peer, interruptMsgProc);
5366
0
        }
5367
5.64k
    }
5368
5369
5.64k
    const bool processed_orphan = ProcessOrphanTx(*peer);
5370
5371
5.64k
    if (pfrom->fDisconnect)
  Branch (5371:9): [True: 0, False: 5.64k]
5372
0
        return false;
5373
5374
5.64k
    if (processed_orphan) return true;
  Branch (5374:9): [True: 0, False: 5.64k]
5375
5376
    // this maintains the order of responses
5377
    // and prevents m_getdata_requests to grow unbounded
5378
5.64k
    {
5379
5.64k
        LOCK(peer->m_getdata_requests_mutex);
5380
5.64k
        if (!peer->m_getdata_requests.empty()) return true;
  Branch (5380:13): [True: 0, False: 5.64k]
5381
5.64k
    }
5382
5383
    // Don't bother if send buffer is too full to respond anyway
5384
5.64k
    if (pfrom->fPauseSend) return false;
  Branch (5384:9): [True: 0, False: 5.64k]
5385
5386
5.64k
    auto poll_result{pfrom->PollMessage()};
5387
5.64k
    if (!poll_result) {
  Branch (5387:9): [True: 0, False: 5.64k]
5388
        // No message to process
5389
0
        return false;
5390
0
    }
5391
5392
5.64k
    CNetMessage& msg{poll_result->first};
5393
5.64k
    bool fMoreWork = poll_result->second;
5394
5395
5.64k
    TRACE6(net, inbound_message,
5396
5.64k
        pfrom->GetId(),
5397
5.64k
        pfrom->m_addr_name.c_str(),
5398
5.64k
        pfrom->ConnectionTypeAsString().c_str(),
5399
5.64k
        msg.m_type.c_str(),
5400
5.64k
        msg.m_recv.size(),
5401
5.64k
        msg.m_recv.data()
5402
5.64k
    );
5403
5404
5.64k
    if (m_opts.capture_messages) {
  Branch (5404:9): [True: 0, False: 5.64k]
5405
0
        CaptureMessage(pfrom->addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true);
5406
0
    }
5407
5408
5.64k
    try {
5409
5.64k
        ProcessMessage(*pfrom, msg.m_type, msg.m_recv, msg.m_time, interruptMsgProc);
5410
5.64k
        if (interruptMsgProc) return false;
  Branch (5410:13): [True: 0, False: 5.64k]
5411
5.64k
        {
5412
5.64k
            LOCK(peer->m_getdata_requests_mutex);
5413
5.64k
            if (!peer->m_getdata_requests.empty()) fMoreWork = true;
  Branch (5413:17): [True: 0, False: 5.64k]
5414
5.64k
        }
5415
        // Does this peer has an orphan ready to reconsider?
5416
        // (Note: we may have provided a parent for an orphan provided
5417
        //  by another peer that was already processed; in that case,
5418
        //  the extra work may not be noticed, possibly resulting in an
5419
        //  unnecessary 100ms delay)
5420
5.64k
        if (m_orphanage.HaveTxToReconsider(peer->m_id)) fMoreWork = true;
  Branch (5420:13): [True: 0, False: 5.64k]
5421
5.64k
    } catch (const std::exception& e) {
5422
2.01k
        LogPrint(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name());
5423
2.01k
    } catch (...) {
5424
0
        LogPrint(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size);
5425
0
    }
5426
5427
5.64k
    return fMoreWork;
5428
5.64k
}
5429
5430
void PeerManagerImpl::ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds)
5431
141
{
5432
141
    AssertLockHeld(cs_main);
5433
5434
141
    CNodeState &state = *State(pto.GetId());
5435
5436
141
    if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) {
  Branch (5436:9): [True: 141, False: 0]
  Branch (5436:42): [True: 36, False: 105]
  Branch (5436:78): [True: 21, False: 15]
5437
        // This is an outbound peer subject to disconnection if they don't
5438
        // announce a block with as much work as the current tip within
5439
        // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if
5440
        // their chain has more work than ours, we should sync to it,
5441
        // unless it's invalid, in which case we should find that out and
5442
        // disconnect from them elsewhere).
5443
21
        if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) {
  Branch (5443:13): [True: 0, False: 21]
  Branch (5443:54): [True: 0, False: 0]
5444
            // The outbound peer has sent us a block with at least as much work as our current tip, so reset the timeout if it was set
5445
0
            if (state.m_chain_sync.m_timeout != 0s) {
  Branch (5445:17): [True: 0, False: 0]
5446
0
                state.m_chain_sync.m_timeout = 0s;
5447
0
                state.m_chain_sync.m_work_header = nullptr;
5448
0
                state.m_chain_sync.m_sent_getheaders = false;
5449
0
            }
5450
21
        } else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) {
  Branch (5450:20): [True: 21, False: 0]
  Branch (5450:20): [True: 21, False: 0]
  Branch (5450:59): [True: 0, False: 0]
  Branch (5450:106): [True: 0, False: 0]
  Branch (5450:147): [True: 0, False: 0]
5451
            // At this point we know that the outbound peer has either never sent us a block/header or they have, but its tip is behind ours
5452
            // AND
5453
            // we are noticing this for the first time (m_timeout is 0)
5454
            // OR we noticed this at some point within the last CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds and set a timeout
5455
            // for them, they caught up to our tip at the time of setting the timer but not to our current one (we've also advanced).
5456
            // Either way, set a new timeout based on our current tip.
5457
21
            state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
5458
21
            state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip();
5459
21
            state.m_chain_sync.m_sent_getheaders = false;
5460
21
        } else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) {
  Branch (5460:20): [True: 0, False: 0]
  Branch (5460:20): [True: 0, False: 0]
  Branch (5460:57): [True: 0, False: 0]
5461
            // No evidence yet that our peer has synced to a chain with work equal to that
5462
            // of our tip, when we first detected it was behind. Send a single getheaders
5463
            // message to give the peer a chance to update us.
5464
0
            if (state.m_chain_sync.m_sent_getheaders) {
  Branch (5464:17): [True: 0, False: 0]
5465
                // They've run out of time to catch up!
5466
0
                LogPrintf("Disconnecting outbound peer %d for old chain, best known block = %s\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>");
5467
0
                pto.fDisconnect = true;
5468
0
            } else {
5469
0
                assert(state.m_chain_sync.m_work_header);
5470
                // Here, we assume that the getheaders message goes out,
5471
                // because it'll either go out or be skipped because of a
5472
                // getheaders in-flight already, in which case the peer should
5473
                // still respond to us with a sufficiently high work chain tip.
5474
0
                MaybeSendGetHeaders(pto,
5475
0
                        GetLocator(state.m_chain_sync.m_work_header->pprev),
5476
0
                        peer);
5477
0
                LogPrint(BCLog::NET, "sending getheaders to outbound peer=%d to verify chain work (current best known block:%s, benchmark blockhash: %s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash().ToString());
5478
0
                state.m_chain_sync.m_sent_getheaders = true;
5479
                // Bump the timeout to allow a response, which could clear the timeout
5480
                // (if the response shows the peer has synced), reset the timeout (if
5481
                // the peer syncs to the required work but not to our tip), or result
5482
                // in disconnect (if we advance to the timeout and pindexBestKnownBlock
5483
                // has not sufficiently progressed)
5484
0
                state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME;
5485
0
            }
5486
0
        }
5487
21
    }
5488
141
}
5489
5490
void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now)
5491
0
{
5492
    // If we have any extra block-relay-only peers, disconnect the youngest unless
5493
    // it's given us a block -- in which case, compare with the second-youngest, and
5494
    // out of those two, disconnect the peer who least recently gave us a block.
5495
    // The youngest block-relay-only peer would be the extra peer we connected
5496
    // to temporarily in order to sync our tip; see net.cpp.
5497
    // Note that we use higher nodeid as a measure for most recent connection.
5498
0
    if (m_connman.GetExtraBlockRelayCount() > 0) {
  Branch (5498:9): [True: 0, False: 0]
5499
0
        std::pair<NodeId, std::chrono::seconds> youngest_peer{-1, 0}, next_youngest_peer{-1, 0};
5500
5501
0
        m_connman.ForEachNode([&](CNode* pnode) {
5502
0
            if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) return;
  Branch (5502:17): [True: 0, False: 0]
  Branch (5502:46): [True: 0, False: 0]
5503
0
            if (pnode->GetId() > youngest_peer.first) {
  Branch (5503:17): [True: 0, False: 0]
5504
0
                next_youngest_peer = youngest_peer;
5505
0
                youngest_peer.first = pnode->GetId();
5506
0
                youngest_peer.second = pnode->m_last_block_time;
5507
0
            }
5508
0
        });
5509
0
        NodeId to_disconnect = youngest_peer.first;
5510
0
        if (youngest_peer.second > next_youngest_peer.second) {
  Branch (5510:13): [True: 0, False: 0]
5511
            // Our newest block-relay-only peer gave us a block more recently;
5512
            // disconnect our second youngest.
5513
0
            to_disconnect = next_youngest_peer.first;
5514
0
        }
5515
0
        m_connman.ForNode(to_disconnect, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5516
0
            AssertLockHeld(::cs_main);
5517
            // Make sure we're not getting a block right now, and that
5518
            // we've been connected long enough for this eviction to happen
5519
            // at all.
5520
            // Note that we only request blocks from a peer if we learn of a
5521
            // valid headers chain with at least as much work as our tip.
5522
0
            CNodeState *node_state = State(pnode->GetId());
5523
0
            if (node_state == nullptr ||
  Branch (5523:17): [True: 0, False: 0]
  Branch (5523:17): [True: 0, False: 0]
5524
0
                (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->vBlocksInFlight.empty())) {
  Branch (5524:18): [True: 0, False: 0]
  Branch (5524:70): [True: 0, False: 0]
5525
0
                pnode->fDisconnect = true;
5526
0
                LogPrint(BCLog::NET, "disconnecting extra block-relay-only peer=%d (last block received at time %d)\n",
5527
0
                         pnode->GetId(), count_seconds(pnode->m_last_block_time));
5528
0
                return true;
5529
0
            } else {
5530
0
                LogPrint(BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5531
0
                         pnode->GetId(), count_seconds(pnode->m_connected), node_state->vBlocksInFlight.size());
5532
0
            }
5533
0
            return false;
5534
0
        });
5535
0
    }
5536
5537
    // Check whether we have too many outbound-full-relay peers
5538
0
    if (m_connman.GetExtraFullOutboundCount() > 0) {
  Branch (5538:9): [True: 0, False: 0]
5539
        // If we have more outbound-full-relay peers than we target, disconnect one.
5540
        // Pick the outbound-full-relay peer that least recently announced
5541
        // us a new block, with ties broken by choosing the more recent
5542
        // connection (higher node id)
5543
        // Protect peers from eviction if we don't have another connection
5544
        // to their network, counting both outbound-full-relay and manual peers.
5545
0
        NodeId worst_peer = -1;
5546
0
        int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
5547
5548
0
        m_connman.ForEachNode([&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main, m_connman.GetNodesMutex()) {
5549
0
            AssertLockHeld(::cs_main);
5550
5551
            // Only consider outbound-full-relay peers that are not already
5552
            // marked for disconnection
5553
0
            if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) return;
  Branch (5553:17): [True: 0, False: 0]
  Branch (5553:49): [True: 0, False: 0]
5554
0
            CNodeState *state = State(pnode->GetId());
5555
0
            if (state == nullptr) return; // shouldn't be possible, but just in case
  Branch (5555:17): [True: 0, False: 0]
5556
            // Don't evict our protected peers
5557
0
            if (state->m_chain_sync.m_protect) return;
  Branch (5557:17): [True: 0, False: 0]
5558
            // If this is the only connection on a particular network that is
5559
            // OUTBOUND_FULL_RELAY or MANUAL, protect it.
5560
0
            if (!m_connman.MultipleManualOrFullOutboundConns(pnode->addr.GetNetwork())) return;
  Branch (5560:17): [True: 0, False: 0]
5561
0
            if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) {
  Branch (5561:17): [True: 0, False: 0]
  Branch (5561:82): [True: 0, False: 0]
  Branch (5561:147): [True: 0, False: 0]
5562
0
                worst_peer = pnode->GetId();
5563
0
                oldest_block_announcement = state->m_last_block_announcement;
5564
0
            }
5565
0
        });
5566
0
        if (worst_peer != -1) {
  Branch (5566:13): [True: 0, False: 0]
5567
0
            bool disconnected = m_connman.ForNode(worst_peer, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5568
0
                AssertLockHeld(::cs_main);
5569
5570
                // Only disconnect a peer that has been connected to us for
5571
                // some reasonable fraction of our check-frequency, to give
5572
                // it time for new information to have arrived.
5573
                // Also don't disconnect any peer we're trying to download a
5574
                // block from.
5575
0
                CNodeState &state = *State(pnode->GetId());
5576
0
                if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.vBlocksInFlight.empty()) {
  Branch (5576:21): [True: 0, False: 0]
  Branch (5576:21): [True: 0, False: 0]
  Branch (5576:72): [True: 0, False: 0]
5577
0
                    LogPrint(BCLog::NET, "disconnecting extra outbound peer=%d (last block announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement);
5578
0
                    pnode->fDisconnect = true;
5579
0
                    return true;
5580
0
                } else {
5581
0
                    LogPrint(BCLog::NET, "keeping outbound peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5582
0
                             pnode->GetId(), count_seconds(pnode->m_connected), state.vBlocksInFlight.size());
5583
0
                    return false;
5584
0
                }
5585
0
            });
5586
0
            if (disconnected) {
  Branch (5586:17): [True: 0, False: 0]
5587
                // If we disconnected an extra peer, that means we successfully
5588
                // connected to at least one peer after the last time we
5589
                // detected a stale tip. Don't try any more extra peers until
5590
                // we next detect a stale tip, to limit the load we put on the
5591
                // network from these extra connections.
5592
0
                m_connman.SetTryNewOutboundPeer(false);
5593
0
            }
5594
0
        }
5595
0
    }
5596
0
}
5597
5598
void PeerManagerImpl::CheckForStaleTipAndEvictPeers()
5599
0
{
5600
0
    LOCK(cs_main);
5601
5602
0
    auto now{GetTime<std::chrono::seconds>()};
5603
5604
0
    EvictExtraOutboundPeers(now);
5605
5606
0
    if (now > m_stale_tip_check_time) {
  Branch (5606:9): [True: 0, False: 0]
5607
        // Check whether our tip is stale, and if so, allow using an extra
5608
        // outbound peer
5609
0
        if (!m_chainman.m_blockman.LoadingBlocks() && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) {
  Branch (5609:13): [True: 0, False: 0]
  Branch (5609:55): [True: 0, False: 0]
  Branch (5609:87): [True: 0, False: 0]
  Branch (5609:124): [True: 0, False: 0]
5610
0
            LogPrintf("Potential stale tip detected, will try using extra outbound peer (last tip update: %d seconds ago)\n",
5611
0
                      count_seconds(now - m_last_tip_update.load()));
5612
0
            m_connman.SetTryNewOutboundPeer(true);
5613
0
        } else if (m_connman.GetTryNewOutboundPeer()) {
  Branch (5613:20): [True: 0, False: 0]
5614
0
            m_connman.SetTryNewOutboundPeer(false);
5615
0
        }
5616
0
        m_stale_tip_check_time = now + STALE_CHECK_INTERVAL;
5617
0
    }
5618
5619
0
    if (!m_initial_sync_finished && CanDirectFetch()) {
  Branch (5619:9): [True: 0, False: 0]
  Branch (5619:37): [True: 0, False: 0]
5620
0
        m_connman.StartExtraBlockRelayPeers();
5621
0
        m_initial_sync_finished = true;
5622
0
    }
5623
0
}
5624
5625
void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now)
5626
145
{
5627
145
    if (m_connman.ShouldRunInactivityChecks(node_to, std::chrono::duration_cast<std::chrono::seconds>(now)) &&
  Branch (5627:9): [True: 144, False: 1]
  Branch (5627:9): [True: 0, False: 145]
5628
145
        peer.m_ping_nonce_sent &&
  Branch (5628:9): [True: 0, False: 144]
5629
145
        now > peer.m_ping_start.load() + TIMEOUT_INTERVAL)
  Branch (5629:9): [True: 0, False: 0]
5630
0
    {
5631
        // The ping timeout is using mocktime. To disable the check during
5632
        // testing, increase -peertimeout.
5633
0
        LogPrint(BCLog::NET, "ping timeout: %fs peer=%d\n", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), peer.m_id);
5634
0
        node_to.fDisconnect = true;
5635
0
        return;
5636
0
    }
5637
5638
145
    bool pingSend = false;
5639
5640
145
    if (peer.m_ping_queued) {
  Branch (5640:9): [True: 0, False: 145]
5641
        // RPC ping request by user
5642
0
        pingSend = true;
5643
0
    }
5644
5645
145
    if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) {
  Branch (5645:9): [True: 145, False: 0]
  Branch (5645:9): [True: 145, False: 0]
  Branch (5645:40): [True: 145, False: 0]
5646
        // Ping automatically sent as a latency probe & keepalive.
5647
145
        pingSend = true;
5648
145
    }
5649
5650
145
    if (pingSend) {
  Branch (5650:9): [True: 145, False: 0]
5651
145
        uint64_t nonce;
5652
145
        do {
5653
145
            nonce = FastRandomContext().rand64();
5654
145
        } while (nonce == 0);
  Branch (5654:18): [True: 0, False: 145]
5655
145
        peer.m_ping_queued = false;
5656
145
        peer.m_ping_start = now;
5657
145
        if (node_to.GetCommonVersion() > BIP0031_VERSION) {
  Branch (5657:13): [True: 139, False: 6]
5658
139
            peer.m_ping_nonce_sent = nonce;
5659
139
            MakeAndPushMessage(node_to, NetMsgType::PING, nonce);
5660
139
        } else {
5661
            // Peer is too old to support ping command with nonce, pong will never arrive.
5662
6
            peer.m_ping_nonce_sent = 0;
5663
6
            MakeAndPushMessage(node_to, NetMsgType::PING);
5664
6
        }
5665
145
    }
5666
145
}
5667
5668
void PeerManagerImpl::MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time)
5669
141
{
5670
    // Nothing to do for non-address-relay peers
5671
141
    if (!peer.m_addr_relay_enabled) return;
  Branch (5671:9): [True: 50, False: 91]
5672
5673
91
    LOCK(peer.m_addr_send_times_mutex);
5674
    // Periodically advertise our local address to the peer.
5675
91
    if (fListen && !m_chainman.IsInitialBlockDownload() &&
  Branch (5675:9): [True: 91, False: 0]
  Branch (5675:20): [True: 0, False: 91]
5676
91
        peer.m_next_local_addr_send < current_time) {
  Branch (5676:9): [True: 0, False: 0]
5677
        // If we've sent before, clear the bloom filter for the peer, so that our
5678
        // self-announcement will actually go out.
5679
        // This might be unnecessary if the bloom filter has already rolled
5680
        // over since our last self-announcement, but there is only a small
5681
        // bandwidth cost that we can incur by doing this (which happens
5682
        // once a day on average).
5683
0
        if (peer.m_next_local_addr_send != 0us) {
  Branch (5683:13): [True: 0, False: 0]
5684
0
            peer.m_addr_known->reset();
5685
0
        }
5686
0
        if (std::optional<CService> local_service = GetLocalAddrForPeer(node)) {
  Branch (5686:37): [True: 0, False: 0]
5687
0
            CAddress local_addr{*local_service, peer.m_our_services, Now<NodeSeconds>()};
5688
0
            PushAddress(peer, local_addr);
5689
0
        }
5690
0
        peer.m_next_local_addr_send = current_time + m_rng.rand_exp_duration(AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
5691
0
    }
5692
5693
    // We sent an `addr` message to this peer recently. Nothing more to do.
5694
91
    if (current_time <= peer.m_next_addr_send) return;
  Branch (5694:9): [True: 0, False: 91]
5695
5696
91
    peer.m_next_addr_send = current_time + m_rng.rand_exp_duration(AVG_ADDRESS_BROADCAST_INTERVAL);
5697
5698
91
    if (!Assume(peer.m_addrs_to_send.size() <= MAX_ADDR_TO_SEND)) {
  Branch (5698:9): [True: 0, False: 91]
5699
        // Should be impossible since we always check size before adding to
5700
        // m_addrs_to_send. Recover by trimming the vector.
5701
0
        peer.m_addrs_to_send.resize(MAX_ADDR_TO_SEND);
5702
0
    }
5703
5704
    // Remove addr records that the peer already knows about, and add new
5705
    // addrs to the m_addr_known filter on the same pass.
5706
91
    auto addr_already_known = [&peer](const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) {
5707
0
        bool ret = peer.m_addr_known->contains(addr.GetKey());
5708
0
        if (!ret) peer.m_addr_known->insert(addr.GetKey());
  Branch (5708:13): [True: 0, False: 0]
5709
0
        return ret;
5710
0
    };
5711
91
    peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known),
5712
91
                           peer.m_addrs_to_send.end());
5713
5714
    // No addr messages to send
5715
91
    if (peer.m_addrs_to_send.empty()) return;
  Branch (5715:9): [True: 91, False: 0]
5716
5717
0
    if (peer.m_wants_addrv2) {
  Branch (5717:9): [True: 0, False: 0]
5718
0
        MakeAndPushMessage(node, NetMsgType::ADDRV2, CAddress::V2_NETWORK(peer.m_addrs_to_send));
5719
0
    } else {
5720
0
        MakeAndPushMessage(node, NetMsgType::ADDR, CAddress::V1_NETWORK(peer.m_addrs_to_send));
5721
0
    }
5722
0
    peer.m_addrs_to_send.clear();
5723
5724
    // we only send the big addr message once
5725
0
    if (peer.m_addrs_to_send.capacity() > 40) {
  Branch (5725:9): [True: 0, False: 0]
5726
0
        peer.m_addrs_to_send.shrink_to_fit();
5727
0
    }
5728
0
}
5729
5730
void PeerManagerImpl::MaybeSendSendHeaders(CNode& node, Peer& peer)
5731
141
{
5732
    // Delay sending SENDHEADERS (BIP 130) until we're done with an
5733
    // initial-headers-sync with this peer. Receiving headers announcements for
5734
    // new blocks while trying to sync their headers chain is problematic,
5735
    // because of the state tracking done.
5736
141
    if (!peer.m_sent_sendheaders && node.GetCommonVersion() >= SENDHEADERS_VERSION) {
  Branch (5736:9): [True: 141, False: 0]
  Branch (5736:37): [True: 137, False: 4]
5737
137
        LOCK(cs_main);
5738
137
        CNodeState &state = *State(node.GetId());
5739
137
        if (state.pindexBestKnownBlock != nullptr &&
  Branch (5739:13): [True: 0, False: 137]
5740
137
                state.pindexBestKnownBlock->nChainWork > m_chainman.MinimumChainWork()) {
  Branch (5740:17): [True: 0, False: 0]
5741
            // Tell our peer we prefer to receive headers rather than inv's
5742
            // We send this to non-NODE NETWORK peers as well, because even
5743
            // non-NODE NETWORK peers can announce blocks (such as pruning
5744
            // nodes)
5745
0
            MakeAndPushMessage(node, NetMsgType::SENDHEADERS);
5746
0
            peer.m_sent_sendheaders = true;
5747
0
        }
5748
137
    }
5749
141
}
5750
5751
void PeerManagerImpl::MaybeSendFeefilter(CNode& pto, Peer& peer, std::chrono::microseconds current_time)
5752
141
{
5753
141
    if (m_opts.ignore_incoming_txs) return;
  Branch (5753:9): [True: 0, False: 141]
5754
141
    if (pto.GetCommonVersion() < FEEFILTER_VERSION) return;
  Branch (5754:9): [True: 4, False: 137]
5755
    // peers with the forcerelay permission should not filter txs to us
5756
137
    if (pto.HasPermission(NetPermissionFlags::ForceRelay)) return;
  Branch (5756:9): [True: 15, False: 122]
5757
    // Don't send feefilter messages to outbound block-relay-only peers since they should never announce
5758
    // transactions to us, regardless of feefilter state.
5759
122
    if (pto.IsBlockOnlyConn()) return;
  Branch (5759:9): [True: 14, False: 108]
5760
5761
108
    CAmount currentFilter = m_mempool.GetMinFee().GetFeePerK();
5762
5763
108
    if (m_chainman.IsInitialBlockDownload()) {
  Branch (5763:9): [True: 108, False: 0]
5764
        // Received tx-inv messages are discarded when the active
5765
        // chainstate is in IBD, so tell the peer to not send them.
5766
108
        currentFilter = MAX_MONEY;
5767
108
    } else {
5768
0
        static const CAmount MAX_FILTER{m_fee_filter_rounder.round(MAX_MONEY)};
5769
0
        if (peer.m_fee_filter_sent == MAX_FILTER) {
  Branch (5769:13): [True: 0, False: 0]
5770
            // Send the current filter if we sent MAX_FILTER previously
5771
            // and made it out of IBD.
5772
0
            peer.m_next_send_feefilter = 0us;
5773
0
        }
5774
0
    }
5775
108
    if (current_time > peer.m_next_send_feefilter) {
  Branch (5775:9): [True: 108, False: 0]
5776
108
        CAmount filterToSend = m_fee_filter_rounder.round(currentFilter);
5777
        // We always have a fee filter of at least the min relay fee
5778
108
        filterToSend = std::max(filterToSend, m_mempool.m_opts.min_relay_feerate.GetFeePerK());
5779
108
        if (filterToSend != peer.m_fee_filter_sent) {
  Branch (5779:13): [True: 108, False: 0]
5780
108
            MakeAndPushMessage(pto, NetMsgType::FEEFILTER, filterToSend);
5781
108
            peer.m_fee_filter_sent = filterToSend;
5782
108
        }
5783
108
        peer.m_next_send_feefilter = current_time + m_rng.rand_exp_duration(AVG_FEEFILTER_BROADCAST_INTERVAL);
5784
108
    }
5785
    // If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
5786
    // until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
5787
0
    else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter &&
  Branch (5787:14): [True: 0, False: 0]
  Branch (5787:14): [True: 0, False: 0]
5788
0
                (currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) {
  Branch (5788:18): [True: 0, False: 0]
  Branch (5788:68): [True: 0, False: 0]
5789
0
        peer.m_next_send_feefilter = current_time + m_rng.randrange<std::chrono::microseconds>(MAX_FEEFILTER_CHANGE_DELAY);
5790
0
    }
5791
108
}
5792
5793
namespace {
5794
class CompareInvMempoolOrder
5795
{
5796
    CTxMemPool* mp;
5797
    bool m_wtxid_relay;
5798
public:
5799
    explicit CompareInvMempoolOrder(CTxMemPool *_mempool, bool use_wtxid)
5800
114
    {
5801
114
        mp = _mempool;
5802
114
        m_wtxid_relay = use_wtxid;
5803
114
    }
5804
5805
    bool operator()(std::set<uint256>::iterator a, std::set<uint256>::iterator b)
5806
0
    {
5807
        /* As std::make_heap produces a max-heap, we want the entries with the
5808
         * fewest ancestors/highest fee to sort later. */
5809
0
        return mp->CompareDepthAndScore(*b, *a, m_wtxid_relay);
5810
0
    }
5811
};
5812
} // namespace
5813
5814
bool PeerManagerImpl::RejectIncomingTxs(const CNode& peer) const
5815
1.07k
{
5816
    // block-relay-only peers may never send txs to us
5817
1.07k
    if (peer.IsBlockOnlyConn()) return true;
  Branch (5817:9): [True: 83, False: 994]
5818
994
    if (peer.IsFeelerConn()) return true;
  Branch (5818:9): [True: 128, False: 866]
5819
    // In -blocksonly mode, peers need the 'relay' permission to send txs to us
5820
866
    if (m_opts.ignore_incoming_txs && !peer.HasPermission(NetPermissionFlags::Relay)) return true;
  Branch (5820:9): [True: 0, False: 866]
  Branch (5820:39): [True: 0, False: 0]
5821
866
    return false;
5822
866
}
5823
5824
bool PeerManagerImpl::SetupAddressRelay(const CNode& node, Peer& peer)
5825
287
{
5826
    // We don't participate in addr relay with outbound block-relay-only
5827
    // connections to prevent providing adversaries with the additional
5828
    // information of addr traffic to infer the link.
5829
287
    if (node.IsBlockOnlyConn()) return false;
  Branch (5829:9): [True: 24, False: 263]
5830
5831
263
    if (!peer.m_addr_relay_enabled.exchange(true)) {
  Branch (5831:9): [True: 263, False: 0]
5832
        // During version message processing (non-block-relay-only outbound peers)
5833
        // or on first addr-related message we have received (inbound peers), initialize
5834
        // m_addr_known.
5835
263
        peer.m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
5836
263
    }
5837
5838
263
    return true;
5839
287
}
5840
5841
bool PeerManagerImpl::SendMessages(CNode* pto)
5842
5.64k
{
5843
5.64k
    AssertLockHeld(g_msgproc_mutex);
5844
5845
5.64k
    PeerRef peer = GetPeerRef(pto->GetId());
5846
5.64k
    if (!peer) return false;
  Branch (5846:9): [True: 0, False: 5.64k]
5847
5.64k
    const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
5848
5849
    // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
5850
    // disconnect misbehaving peers even before the version handshake is complete.
5851
5.64k
    if (MaybeDiscourageAndDisconnect(*pto, *peer)) return true;
  Branch (5851:9): [True: 0, False: 5.64k]
5852
5853
    // Don't send anything until the version handshake is complete
5854
5.64k
    if (!pto->fSuccessfullyConnected || pto->fDisconnect)
  Branch (5854:9): [True: 5.48k, False: 163]
  Branch (5854:41): [True: 14, False: 149]
5855
5.49k
        return true;
5856
5857
149
    const auto current_time{GetTime<std::chrono::microseconds>()};
5858
5859
149
    if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) {
  Branch (5859:9): [True: 5, False: 144]
  Branch (5859:9): [True: 4, False: 145]
  Branch (5859:35): [True: 4, False: 1]
5860
4
        LogPrint(BCLog::NET, "addrfetch connection timeout; disconnecting peer=%d\n", pto->GetId());
5861
4
        pto->fDisconnect = true;
5862
4
        return true;
5863
4
    }
5864
5865
145
    MaybeSendPing(*pto, *peer, current_time);
5866
5867
    // MaybeSendPing may have marked peer for disconnection
5868
145
    if (pto->fDisconnect) return true;
  Branch (5868:9): [True: 4, False: 141]
5869
5870
141
    MaybeSendAddr(*pto, *peer, current_time);
5871
5872
141
    MaybeSendSendHeaders(*pto, *peer);
5873
5874
141
    {
5875
141
        LOCK(cs_main);
5876
5877
141
        CNodeState &state = *State(pto->GetId());
5878
5879
        // Start block sync
5880
141
        if (m_chainman.m_best_header == nullptr) {
  Branch (5880:13): [True: 0, False: 141]
5881
0
            m_chainman.m_best_header = m_chainman.ActiveChain().Tip();
5882
0
        }
5883
5884
        // Determine whether we might try initial headers sync or parallel
5885
        // block download from this peer -- this mostly affects behavior while
5886
        // in IBD (once out of IBD, we sync from all peers).
5887
141
        bool sync_blocks_and_headers_from_peer = false;
5888
141
        if (state.fPreferredDownload) {
  Branch (5888:13): [True: 106, False: 35]
5889
106
            sync_blocks_and_headers_from_peer = true;
5890
106
        } else if (CanServeBlocks(*peer) && !pto->IsAddrFetchConn()) {
  Branch (5890:20): [True: 20, False: 15]
  Branch (5890:45): [True: 19, False: 1]
5891
            // Typically this is an inbound peer. If we don't have any outbound
5892
            // peers, or if we aren't downloading any blocks from such peers,
5893
            // then allow block downloads from this peer, too.
5894
            // We prefer downloading blocks from outbound peers to avoid
5895
            // putting undue load on (say) some home user who is just making
5896
            // outbound connections to the network, but if our only source of
5897
            // the latest blocks is from an inbound peer, we have to be sure to
5898
            // eventually download it (and not just wait indefinitely for an
5899
            // outbound peer to have it).
5900
19
            if (m_num_preferred_download_peers == 0 || mapBlocksInFlight.empty()) {
  Branch (5900:17): [True: 8, False: 11]
  Branch (5900:56): [True: 11, False: 0]
5901
19
                sync_blocks_and_headers_from_peer = true;
5902
19
            }
5903
19
        }
5904
5905
141
        if (!state.fSyncStarted && CanServeBlocks(*peer) && !m_chainman.m_blockman.LoadingBlocks()) {
  Branch (5905:13): [True: 141, False: 0]
  Branch (5905:36): [True: 126, False: 15]
  Branch (5905:61): [True: 126, False: 0]
5906
            // Only actively request headers from a single peer, unless we're close to today.
5907
126
            if ((nSyncStarted == 0 && sync_blocks_and_headers_from_peer) || m_chainman.m_best_header->Time() > NodeClock::now() - 24h) {
  Branch (5907:17): [True: 85, False: 41]
  Branch (5907:18): [True: 86, False: 40]
  Branch (5907:39): [True: 85, False: 1]
  Branch (5907:77): [True: 0, False: 41]
5908
85
                const CBlockIndex* pindexStart = m_chainman.m_best_header;
5909
                /* If possible, start at the block preceding the currently
5910
                   best known header.  This ensures that we always get a
5911
                   non-empty list of headers back as long as the peer
5912
                   is up-to-date.  With a non-empty response, we can initialise
5913
                   the peer's known best block.  This wouldn't be possible
5914
                   if we requested starting at m_chainman.m_best_header and
5915
                   got back an empty response.  */
5916
85
                if (pindexStart->pprev)
  Branch (5916:21): [True: 0, False: 85]
5917
0
                    pindexStart = pindexStart->pprev;
5918
85
                if (MaybeSendGetHeaders(*pto, GetLocator(pindexStart), *peer)) {
  Branch (5918:21): [True: 85, False: 0]
5919
85
                    LogPrint(BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height);
5920
5921
85
                    state.fSyncStarted = true;
5922
85
                    peer->m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE +
5923
85
                        (
5924
                         // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to microseconds before scaling
5925
                         // to maintain precision
5926
85
                         std::chrono::microseconds{HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} *
5927
85
                         Ticks<std::chrono::seconds>(NodeClock::now() - m_chainman.m_best_header->Time()) / consensusParams.nPowTargetSpacing
5928
85
                        );
5929
85
                    nSyncStarted++;
5930
85
                }
5931
85
            }
5932
126
        }
5933
5934
        //
5935
        // Try sending block announcements via headers
5936
        //
5937
141
        {
5938
            // If we have no more than MAX_BLOCKS_TO_ANNOUNCE in our
5939
            // list of block hashes we're relaying, and our peer wants
5940
            // headers announcements, then find the first header
5941
            // not yet known to our peer but would connect, and send.
5942
            // If no header would connect, or if we have too many
5943
            // blocks, or if the peer doesn't want headers, just
5944
            // add all to the inv queue.
5945
141
            LOCK(peer->m_block_inv_mutex);
5946
141
            std::vector<CBlock> vHeaders;
5947
141
            bool fRevertToInv = ((!peer->m_prefers_headers &&
  Branch (5947:35): [True: 138, False: 3]
5948
141
                                 (!state.m_requested_hb_cmpctblocks || peer->m_blocks_for_headers_relay.size() > 1)) ||
  Branch (5948:35): [True: 137, False: 1]
  Branch (5948:72): [True: 0, False: 1]
5949
141
                                 peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE);
  Branch (5949:34): [True: 0, False: 4]
5950
141
            const CBlockIndex *pBestIndex = nullptr; // last header queued for delivery
5951
141
            ProcessBlockAvailability(pto->GetId()); // ensure pindexBestKnownBlock is up-to-date
5952
5953
141
            if (!fRevertToInv) {
  Branch (5953:17): [True: 4, False: 137]
5954
4
                bool fFoundStartingHeader = false;
5955
                // Try to find first header that our peer doesn't have, and
5956
                // then send all headers past that one.  If we come across any
5957
                // headers that aren't on m_chainman.ActiveChain(), give up.
5958
4
                for (const uint256& hash : peer->m_blocks_for_headers_relay) {
  Branch (5958:42): [True: 0, False: 4]
5959
0
                    const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
5960
0
                    assert(pindex);
5961
0
                    if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
  Branch (5961:25): [True: 0, False: 0]
5962
                        // Bail out if we reorged away from this block
5963
0
                        fRevertToInv = true;
5964
0
                        break;
5965
0
                    }
5966
0
                    if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
  Branch (5966:25): [True: 0, False: 0]
  Branch (5966:50): [True: 0, False: 0]
5967
                        // This means that the list of blocks to announce don't
5968
                        // connect to each other.
5969
                        // This shouldn't really be possible to hit during
5970
                        // regular operation (because reorgs should take us to
5971
                        // a chain that has some block not on the prior chain,
5972
                        // which should be caught by the prior check), but one
5973
                        // way this could happen is by using invalidateblock /
5974
                        // reconsiderblock repeatedly on the tip, causing it to
5975
                        // be added multiple times to m_blocks_for_headers_relay.
5976
                        // Robustly deal with this rare situation by reverting
5977
                        // to an inv.
5978
0
                        fRevertToInv = true;
5979
0
                        break;
5980
0
                    }
5981
0
                    pBestIndex = pindex;
5982
0
                    if (fFoundStartingHeader) {
  Branch (5982:25): [True: 0, False: 0]
5983
                        // add this to the headers message
5984
0
                        vHeaders.emplace_back(pindex->GetBlockHeader());
5985
0
                    } else if (PeerHasHeader(&state, pindex)) {
  Branch (5985:32): [True: 0, False: 0]
5986
0
                        continue; // keep looking for the first new block
5987
0
                    } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) {
  Branch (5987:32): [True: 0, False: 0]
  Branch (5987:60): [True: 0, False: 0]
5988
                        // Peer doesn't have this header but they do have the prior one.
5989
                        // Start sending headers.
5990
0
                        fFoundStartingHeader = true;
5991
0
                        vHeaders.emplace_back(pindex->GetBlockHeader());
5992
0
                    } else {
5993
                        // Peer doesn't have this header or the prior one -- nothing will
5994
                        // connect, so bail out.
5995
0
                        fRevertToInv = true;
5996
0
                        break;
5997
0
                    }
5998
0
                }
5999
4
            }
6000
141
            if (!fRevertToInv && !vHeaders.empty()) {
  Branch (6000:17): [True: 4, False: 137]
  Branch (6000:34): [True: 0, False: 4]
6001
0
                if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) {
  Branch (6001:21): [True: 0, False: 0]
  Branch (6001:45): [True: 0, False: 0]
6002
                    // We only send up to 1 block as header-and-ids, as otherwise
6003
                    // probably means we're doing an initial-ish-sync or they're slow
6004
0
                    LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__,
6005
0
                            vHeaders.front().GetHash().ToString(), pto->GetId());
6006
6007
0
                    std::optional<CSerializedNetMsg> cached_cmpctblock_msg;
6008
0
                    {
6009
0
                        LOCK(m_most_recent_block_mutex);
6010
0
                        if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) {
  Branch (6010:29): [True: 0, False: 0]
6011
0
                            cached_cmpctblock_msg = NetMsg::Make(NetMsgType::CMPCTBLOCK, *m_most_recent_compact_block);
6012
0
                        }
6013
0
                    }
6014
0
                    if (cached_cmpctblock_msg.has_value()) {
  Branch (6014:25): [True: 0, False: 0]
6015
0
                        PushMessage(*pto, std::move(cached_cmpctblock_msg.value()));
6016
0
                    } else {
6017
0
                        CBlock block;
6018
0
                        const bool ret{m_chainman.m_blockman.ReadBlockFromDisk(block, *pBestIndex)};
6019
0
                        assert(ret);
6020
0
                        CBlockHeaderAndShortTxIDs cmpctblock{block, m_rng.rand64()};
6021
0
                        MakeAndPushMessage(*pto, NetMsgType::CMPCTBLOCK, cmpctblock);
6022
0
                    }
6023
0
                    state.pindexBestHeaderSent = pBestIndex;
6024
0
                } else if (peer->m_prefers_headers) {
  Branch (6024:28): [True: 0, False: 0]
6025
0
                    if (vHeaders.size() > 1) {
  Branch (6025:25): [True: 0, False: 0]
6026
0
                        LogPrint(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
6027
0
                                vHeaders.size(),
6028
0
                                vHeaders.front().GetHash().ToString(),
6029
0
                                vHeaders.back().GetHash().ToString(), pto->GetId());
6030
0
                    } else {
6031
0
                        LogPrint(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__,
6032
0
                                vHeaders.front().GetHash().ToString(), pto->GetId());
6033
0
                    }
6034
0
                    MakeAndPushMessage(*pto, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
6035
0
                    state.pindexBestHeaderSent = pBestIndex;
6036
0
                } else
6037
0
                    fRevertToInv = true;
6038
0
            }
6039
141
            if (fRevertToInv) {
  Branch (6039:17): [True: 137, False: 4]
6040
                // If falling back to using an inv, just try to inv the tip.
6041
                // The last entry in m_blocks_for_headers_relay was our tip at some point
6042
                // in the past.
6043
137
                if (!peer->m_blocks_for_headers_relay.empty()) {
  Branch (6043:21): [True: 0, False: 137]
6044
0
                    const uint256& hashToAnnounce = peer->m_blocks_for_headers_relay.back();
6045
0
                    const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce);
6046
0
                    assert(pindex);
6047
6048
                    // Warn if we're announcing a block that is not on the main chain.
6049
                    // This should be very rare and could be optimized out.
6050
                    // Just log for now.
6051
0
                    if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
  Branch (6051:25): [True: 0, False: 0]
6052
0
                        LogPrint(BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n",
6053
0
                            hashToAnnounce.ToString(), m_chainman.ActiveChain().Tip()->GetBlockHash().ToString());
6054
0
                    }
6055
6056
                    // If the peer's chain has this block, don't inv it back.
6057
0
                    if (!PeerHasHeader(&state, pindex)) {
  Branch (6057:25): [True: 0, False: 0]
6058
0
                        peer->m_blocks_for_inv_relay.push_back(hashToAnnounce);
6059
0
                        LogPrint(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__,
6060
0
                            pto->GetId(), hashToAnnounce.ToString());
6061
0
                    }
6062
0
                }
6063
137
            }
6064
141
            peer->m_blocks_for_headers_relay.clear();
6065
141
        }
6066
6067
        //
6068
        // Message: inventory
6069
        //
6070
0
        std::vector<CInv> vInv;
6071
141
        {
6072
141
            LOCK(peer->m_block_inv_mutex);
6073
141
            vInv.reserve(std::max<size_t>(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_TARGET));
6074
6075
            // Add blocks
6076
141
            for (const uint256& hash : peer->m_blocks_for_inv_relay) {
  Branch (6076:38): [True: 0, False: 141]
6077
0
                vInv.emplace_back(MSG_BLOCK, hash);
6078
0
                if (vInv.size() == MAX_INV_SZ) {
  Branch (6078:21): [True: 0, False: 0]
6079
0
                    MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
6080
0
                    vInv.clear();
6081
0
                }
6082
0
            }
6083
141
            peer->m_blocks_for_inv_relay.clear();
6084
141
        }
6085
6086
141
        if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
  Branch (6086:49): [True: 114, False: 27]
6087
114
                LOCK(tx_relay->m_tx_inventory_mutex);
6088
                // Check whether periodic sends should happen
6089
114
                bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan);
6090
114
                if (tx_relay->m_next_inv_send_time < current_time) {
  Branch (6090:21): [True: 114, False: 0]
6091
114
                    fSendTrickle = true;
6092
114
                    if (pto->IsInboundConn()) {
  Branch (6092:25): [True: 29, False: 85]
6093
29
                        tx_relay->m_next_inv_send_time = NextInvToInbounds(current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL);
6094
85
                    } else {
6095
85
                        tx_relay->m_next_inv_send_time = current_time + m_rng.rand_exp_duration(OUTBOUND_INVENTORY_BROADCAST_INTERVAL);
6096
85
                    }
6097
114
                }
6098
6099
                // Time to send but the peer has requested we not relay transactions.
6100
114
                if (fSendTrickle) {
  Branch (6100:21): [True: 114, False: 0]
6101
114
                    LOCK(tx_relay->m_bloom_filter_mutex);
6102
114
                    if (!tx_relay->m_relay_txs) tx_relay->m_tx_inventory_to_send.clear();
  Branch (6102:25): [True: 4, False: 110]
6103
114
                }
6104
6105
                // Respond to BIP35 mempool requests
6106
114
                if (fSendTrickle && tx_relay->m_send_mempool) {
  Branch (6106:21): [True: 114, False: 0]
  Branch (6106:37): [True: 0, False: 114]
6107
0
                    auto vtxinfo = m_mempool.infoAll();
6108
0
                    tx_relay->m_send_mempool = false;
6109
0
                    const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
6110
6111
0
                    LOCK(tx_relay->m_bloom_filter_mutex);
6112
6113
0
                    for (const auto& txinfo : vtxinfo) {
  Branch (6113:45): [True: 0, False: 0]
6114
0
                        CInv inv{
6115
0
                            peer->m_wtxid_relay ? MSG_WTX : MSG_TX,
  Branch (6115:29): [True: 0, False: 0]
6116
0
                            peer->m_wtxid_relay ?
  Branch (6116:29): [True: 0, False: 0]
6117
0
                                txinfo.tx->GetWitnessHash().ToUint256() :
6118
0
                                txinfo.tx->GetHash().ToUint256(),
6119
0
                        };
6120
0
                        tx_relay->m_tx_inventory_to_send.erase(inv.hash);
6121
6122
                        // Don't send transactions that peers will not put into their mempool
6123
0
                        if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
  Branch (6123:29): [True: 0, False: 0]
6124
0
                            continue;
6125
0
                        }
6126
0
                        if (tx_relay->m_bloom_filter) {
  Branch (6126:29): [True: 0, False: 0]
6127
0
                            if (!tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
  Branch (6127:33): [True: 0, False: 0]
6128
0
                        }
6129
0
                        tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
6130
0
                        vInv.push_back(inv);
6131
0
                        if (vInv.size() == MAX_INV_SZ) {
  Branch (6131:29): [True: 0, False: 0]
6132
0
                            MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
6133
0
                            vInv.clear();
6134
0
                        }
6135
0
                    }
6136
0
                }
6137
6138
                // Determine transactions to relay
6139
114
                if (fSendTrickle) {
  Branch (6139:21): [True: 114, False: 0]
6140
                    // Produce a vector with all candidates for sending
6141
114
                    std::vector<std::set<uint256>::iterator> vInvTx;
6142
114
                    vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size());
6143
114
                    for (std::set<uint256>::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) {
  Branch (6143:101): [True: 0, False: 114]
6144
0
                        vInvTx.push_back(it);
6145
0
                    }
6146
114
                    const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
6147
                    // Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
6148
                    // A heap is used so that not all items need sorting if only a few are being sent.
6149
114
                    CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool, peer->m_wtxid_relay);
6150
114
                    std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
6151
                    // No reason to drain out at many times the network's capacity,
6152
                    // especially since we have many peers and some will draw much shorter delays.
6153
114
                    unsigned int nRelayedTransactions = 0;
6154
114
                    LOCK(tx_relay->m_bloom_filter_mutex);
6155
114
                    size_t broadcast_max{INVENTORY_BROADCAST_TARGET + (tx_relay->m_tx_inventory_to_send.size()/1000)*5};
6156
114
                    broadcast_max = std::min<size_t>(INVENTORY_BROADCAST_MAX, broadcast_max);
6157
114
                    while (!vInvTx.empty() && nRelayedTransactions < broadcast_max) {
  Branch (6157:28): [True: 0, False: 114]
  Branch (6157:47): [True: 0, False: 0]
6158
                        // Fetch the top element from the heap
6159
0
                        std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
6160
0
                        std::set<uint256>::iterator it = vInvTx.back();
6161
0
                        vInvTx.pop_back();
6162
0
                        uint256 hash = *it;
6163
0
                        CInv inv(peer->m_wtxid_relay ? MSG_WTX : MSG_TX, hash);
  Branch (6163:34): [True: 0, False: 0]
6164
                        // Remove it from the to-be-sent set
6165
0
                        tx_relay->m_tx_inventory_to_send.erase(it);
6166
                        // Check if not in the filter already
6167
0
                        if (tx_relay->m_tx_inventory_known_filter.contains(hash)) {
  Branch (6167:29): [True: 0, False: 0]
6168
0
                            continue;
6169
0
                        }
6170
                        // Not in the mempool anymore? don't bother sending it.
6171
0
                        auto txinfo = m_mempool.info(ToGenTxid(inv));
6172
0
                        if (!txinfo.tx) {
  Branch (6172:29): [True: 0, False: 0]
6173
0
                            continue;
6174
0
                        }
6175
                        // Peer told you to not send transactions at that feerate? Don't bother sending it.
6176
0
                        if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
  Branch (6176:29): [True: 0, False: 0]
6177
0
                            continue;
6178
0
                        }
6179
0
                        if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
  Branch (6179:29): [True: 0, False: 0]
  Branch (6179:57): [True: 0, False: 0]
6180
                        // Send
6181
0
                        vInv.push_back(inv);
6182
0
                        nRelayedTransactions++;
6183
0
                        if (vInv.size() == MAX_INV_SZ) {
  Branch (6183:29): [True: 0, False: 0]
6184
0
                            MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
6185
0
                            vInv.clear();
6186
0
                        }
6187
0
                        tx_relay->m_tx_inventory_known_filter.insert(hash);
6188
0
                    }
6189
6190
                    // Ensure we'll respond to GETDATA requests for anything we've just announced
6191
114
                    LOCK(m_mempool.cs);
6192
114
                    tx_relay->m_last_inv_sequence = m_mempool.GetSequence();
6193
114
                }
6194
114
        }
6195
141
        if (!vInv.empty())
  Branch (6195:13): [True: 0, False: 141]
6196
0
            MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
6197
6198
        // Detect whether we're stalling
6199
141
        auto stalling_timeout = m_block_stalling_timeout.load();
6200
141
        if (state.m_stalling_since.count() && state.m_stalling_since < current_time - stalling_timeout) {
  Branch (6200:13): [True: 0, False: 141]
  Branch (6200:13): [True: 0, False: 141]
  Branch (6200:47): [True: 0, False: 0]
6201
            // Stalling only triggers when the block download window cannot move. During normal steady state,
6202
            // the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
6203
            // should only happen during initial block download.
6204
0
            LogPrintf("Peer=%d%s is stalling block download, disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
6205
0
            pto->fDisconnect = true;
6206
            // Increase timeout for the next peer so that we don't disconnect multiple peers if our own
6207
            // bandwidth is insufficient.
6208
0
            const auto new_timeout = std::min(2 * stalling_timeout, BLOCK_STALLING_TIMEOUT_MAX);
6209
0
            if (stalling_timeout != new_timeout && m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
  Branch (6209:17): [True: 0, False: 0]
  Branch (6209:52): [True: 0, False: 0]
6210
0
                LogPrint(BCLog::NET, "Increased stalling timeout temporarily to %d seconds\n", count_seconds(new_timeout));
6211
0
            }
6212
0
            return true;
6213
0
        }
6214
        // In case there is a block that has been in flight from this peer for block_interval * (1 + 0.5 * N)
6215
        // (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
6216
        // We compensate for other peers to prevent killing off peers due to our own downstream link
6217
        // being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
6218
        // to unreasonably increase our timeout.
6219
141
        if (state.vBlocksInFlight.size() > 0) {
  Branch (6219:13): [True: 0, False: 141]
6220
0
            QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
6221
0
            int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1;
6222
0
            if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
  Branch (6222:17): [True: 0, False: 0]
6223
0
                LogPrintf("Timeout downloading block %s from peer=%d%s, disconnecting\n", queuedBlock.pindex->GetBlockHash().ToString(), pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
6224
0
                pto->fDisconnect = true;
6225
0
                return true;
6226
0
            }
6227
0
        }
6228
        // Check for headers sync timeouts
6229
141
        if (state.fSyncStarted && peer->m_headers_sync_timeout < std::chrono::microseconds::max()) {
  Branch (6229:13): [True: 85, False: 56]
  Branch (6229:13): [True: 85, False: 56]
  Branch (6229:35): [True: 85, False: 0]
6230
            // Detect whether this is a stalling initial-headers-sync peer
6231
85
            if (m_chainman.m_best_header->Time() <= NodeClock::now() - 24h) {
  Branch (6231:17): [True: 85, False: 0]
6232
85
                if (current_time > peer->m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) {
  Branch (6232:21): [True: 0, False: 85]
  Branch (6232:68): [True: 0, False: 0]
  Branch (6232:89): [True: 0, False: 0]
6233
                    // Disconnect a peer (without NetPermissionFlags::NoBan permission) if it is our only sync peer,
6234
                    // and we have others we could be using instead.
6235
                    // Note: If all our peers are inbound, then we won't
6236
                    // disconnect our sync peer for stalling; we have bigger
6237
                    // problems if we can't get any outbound peers.
6238
0
                    if (!pto->HasPermission(NetPermissionFlags::NoBan)) {
  Branch (6238:25): [True: 0, False: 0]
6239
0
                        LogPrintf("Timeout downloading headers from peer=%d%s, disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
6240
0
                        pto->fDisconnect = true;
6241
0
                        return true;
6242
0
                    } else {
6243
0
                        LogPrintf("Timeout downloading headers from noban peer=%d%s, not disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
6244
                        // Reset the headers sync state so that we have a
6245
                        // chance to try downloading from a different peer.
6246
                        // Note: this will also result in at least one more
6247
                        // getheaders message to be sent to
6248
                        // this peer (eventually).
6249
0
                        state.fSyncStarted = false;
6250
0
                        nSyncStarted--;
6251
0
                        peer->m_headers_sync_timeout = 0us;
6252
0
                    }
6253
0
                }
6254
85
            } else {
6255
                // After we've caught up once, reset the timeout so we can't trigger
6256
                // disconnect later.
6257
0
                peer->m_headers_sync_timeout = std::chrono::microseconds::max();
6258
0
            }
6259
85
        }
6260
6261
        // Check that outbound peers have reasonable chains
6262
        // GetTime() is used by this anti-DoS logic so we can test this using mocktime
6263
141
        ConsiderEviction(*pto, *peer, GetTime<std::chrono::seconds>());
6264
6265
        //
6266
        // Message: getdata (blocks)
6267
        //
6268
141
        std::vector<CInv> vGetData;
6269
141
        if (CanServeBlocks(*peer) && ((sync_blocks_and_headers_from_peer && !IsLimitedPeer(*peer)) || !m_chainman.IsInitialBlockDownload()) && state.vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
  Branch (6269:13): [True: 126, False: 15]
  Branch (6269:40): [True: 125, False: 1]
  Branch (6269:77): [True: 106, False: 19]
  Branch (6269:103): [True: 0, False: 20]
  Branch (6269:144): [True: 106, False: 0]
6270
106
            std::vector<const CBlockIndex*> vToDownload;
6271
106
            NodeId staller = -1;
6272
106
            auto get_inflight_budget = [&state]() {
6273
106
                return std::max(0, MAX_BLOCKS_IN_TRANSIT_PER_PEER - static_cast<int>(state.vBlocksInFlight.size()));
6274
106
            };
6275
6276
            // If a snapshot chainstate is in use, we want to find its next blocks
6277
            // before the background chainstate to prioritize getting to network tip.
6278
106
            FindNextBlocksToDownload(*peer, get_inflight_budget(), vToDownload, staller);
6279
106
            if (m_chainman.BackgroundSyncInProgress() && !IsLimitedPeer(*peer)) {
  Branch (6279:17): [True: 0, False: 106]
  Branch (6279:58): [True: 0, False: 0]
6280
0
                TryDownloadingHistoricalBlocks(
6281
0
                    *peer,
6282
0
                    get_inflight_budget(),
6283
0
                    vToDownload, m_chainman.GetBackgroundSyncTip(),
6284
0
                    Assert(m_chainman.GetSnapshotBaseBlock()));
6285
0
            }
6286
106
            for (const CBlockIndex *pindex : vToDownload) {
  Branch (6286:44): [True: 0, False: 106]
6287
0
                uint32_t nFetchFlags = GetFetchFlags(*peer);
6288
0
                vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
6289
0
                BlockRequested(pto->GetId(), *pindex);
6290
0
                LogPrint(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
6291
0
                    pindex->nHeight, pto->GetId());
6292
0
            }
6293
106
            if (state.vBlocksInFlight.empty() && staller != -1) {
  Branch (6293:17): [True: 106, False: 0]
  Branch (6293:50): [True: 0, False: 106]
6294
0
                if (State(staller)->m_stalling_since == 0us) {
  Branch (6294:21): [True: 0, False: 0]
6295
0
                    State(staller)->m_stalling_since = current_time;
6296
0
                    LogPrint(BCLog::NET, "Stall started peer=%d\n", staller);
6297
0
                }
6298
0
            }
6299
106
        }
6300
6301
        //
6302
        // Message: getdata (transactions)
6303
        //
6304
141
        std::vector<std::pair<NodeId, GenTxid>> expired;
6305
141
        auto requestable = m_txrequest.GetRequestable(pto->GetId(), current_time, &expired);
6306
141
        for (const auto& entry : expired) {
  Branch (6306:32): [True: 0, False: 141]
6307
0
            LogPrint(BCLog::NET, "timeout of inflight %s %s from peer=%d\n", entry.second.IsWtxid() ? "wtx" : "tx",
6308
0
                entry.second.GetHash().ToString(), entry.first);
6309
0
        }
6310
141
        for (const GenTxid& gtxid : requestable) {
  Branch (6310:35): [True: 0, False: 141]
6311
            // Exclude m_recent_rejects_reconsiderable: we may be requesting a missing parent
6312
            // that was previously rejected for being too low feerate.
6313
0
            if (!AlreadyHaveTx(gtxid, /*include_reconsiderable=*/false)) {
  Branch (6313:17): [True: 0, False: 0]
6314
0
                LogPrint(BCLog::NET, "Requesting %s %s peer=%d\n", gtxid.IsWtxid() ? "wtx" : "tx",
6315
0
                    gtxid.GetHash().ToString(), pto->GetId());
6316
0
                vGetData.emplace_back(gtxid.IsWtxid() ? MSG_WTX : (MSG_TX | GetFetchFlags(*peer)), gtxid.GetHash());
  Branch (6316:39): [True: 0, False: 0]
6317
0
                if (vGetData.size() >= MAX_GETDATA_SZ) {
  Branch (6317:21): [True: 0, False: 0]
6318
0
                    MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
6319
0
                    vGetData.clear();
6320
0
                }
6321
0
                m_txrequest.RequestedTx(pto->GetId(), gtxid.GetHash(), current_time + GETDATA_TX_INTERVAL);
6322
0
            } else {
6323
                // We have already seen this transaction, no need to download. This is just a belt-and-suspenders, as
6324
                // this should already be called whenever a transaction becomes AlreadyHaveTx().
6325
0
                m_txrequest.ForgetTxHash(gtxid.GetHash());
6326
0
            }
6327
0
        }
6328
6329
6330
141
        if (!vGetData.empty())
  Branch (6330:13): [True: 0, False: 141]
6331
0
            MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
6332
141
    } // release cs_main
6333
0
    MaybeSendFeefilter(*pto, *peer, current_time);
6334
141
    return true;
6335
141
}