Coverage Report

Created: 2024-08-21 05:08

/workdir/bitcoin/src/net.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-2022 The Bitcoin Core developers
3
// Distributed under the MIT software license, see the accompanying
4
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6
#include <config/bitcoin-config.h> // IWYU pragma: keep
7
8
#include <net.h>
9
10
#include <addrdb.h>
11
#include <addrman.h>
12
#include <banman.h>
13
#include <clientversion.h>
14
#include <common/args.h>
15
#include <compat/compat.h>
16
#include <consensus/consensus.h>
17
#include <crypto/sha256.h>
18
#include <i2p.h>
19
#include <key.h>
20
#include <logging.h>
21
#include <memusage.h>
22
#include <net_permissions.h>
23
#include <netaddress.h>
24
#include <netbase.h>
25
#include <node/eviction.h>
26
#include <node/interface_ui.h>
27
#include <protocol.h>
28
#include <random.h>
29
#include <scheduler.h>
30
#include <util/fs.h>
31
#include <util/sock.h>
32
#include <util/strencodings.h>
33
#include <util/thread.h>
34
#include <util/threadinterrupt.h>
35
#include <util/trace.h>
36
#include <util/translation.h>
37
#include <util/vector.h>
38
39
#ifdef WIN32
40
#include <string.h>
41
#endif
42
43
#if HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS
44
#include <ifaddrs.h>
45
#endif
46
47
#include <algorithm>
48
#include <array>
49
#include <cstdint>
50
#include <functional>
51
#include <optional>
52
#include <unordered_map>
53
54
#include <math.h>
55
56
/** Maximum number of block-relay-only anchor connections */
57
static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
58
static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
59
/** Anchor IP address database file name */
60
const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
61
62
// How often to dump addresses to peers.dat
63
static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
64
65
/** Number of DNS seeds to query when the number of connections is low. */
66
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
67
68
/** How long to delay before querying DNS seeds
69
 *
70
 * If we have more than THRESHOLD entries in addrman, then it's likely
71
 * that we got those addresses from having previously connected to the P2P
72
 * network, and that we'll be able to successfully reconnect to the P2P
73
 * network via contacting one of them. So if that's the case, spend a
74
 * little longer trying to connect to known peers before querying the
75
 * DNS seeds.
76
 */
77
static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
78
static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
79
static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
80
81
/** The default timeframe for -maxuploadtarget. 1 day. */
82
static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
83
84
// A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
85
static constexpr auto FEELER_SLEEP_WINDOW{1s};
86
87
/** Frequency to attempt extra connections to reachable networks we're not connected to yet **/
88
static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
89
90
/** Used to pass flags to the Bind() function */
91
enum BindFlags {
92
    BF_NONE         = 0,
93
    BF_REPORT_ERROR = (1U << 0),
94
    /**
95
     * Do not call AddLocal() for our special addresses, e.g., for incoming
96
     * Tor connections, to prevent gossiping them over the network.
97
     */
98
    BF_DONT_ADVERTISE = (1U << 1),
99
};
100
101
// The set of sockets cannot be modified while waiting
102
// The sleep time needs to be small to avoid new sockets stalling
103
static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
104
105
const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
106
107
static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
108
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
109
static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
110
//
111
// Global state variables
112
//
113
bool fDiscover = true;
114
bool fListen = true;
115
GlobalMutex g_maplocalhost_mutex;
116
std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
117
std::string strSubVersion;
118
119
size_t CSerializedNetMsg::GetMemoryUsage() const noexcept
120
24.9k
{
121
    // Don't count the dynamic memory used for the m_type string, by assuming it fits in the
122
    // "small string" optimization area (which stores data inside the object itself, up to some
123
    // size; 15 bytes in modern libstdc++).
124
24.9k
    return sizeof(*this) + memusage::DynamicUsage(data);
125
24.9k
}
126
127
void CConnman::AddAddrFetch(const std::string& strDest)
128
0
{
129
0
    LOCK(m_addr_fetches_mutex);
130
0
    m_addr_fetches.push_back(strDest);
131
0
}
132
133
uint16_t GetListenPort()
134
0
{
135
    // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
136
0
    for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
  Branch (136:38): [True: 0, False: 0]
137
0
        constexpr uint16_t dummy_port = 0;
138
139
0
        const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
140
0
        if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
  Branch (140:13): [True: 0, False: 0]
  Branch (140:38): [True: 0, False: 0]
141
0
    }
142
143
    // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
144
    // (-whitebind= is required to have ":port").
145
0
    for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
  Branch (145:43): [True: 0, False: 0]
146
0
        NetWhitebindPermissions whitebind;
147
0
        bilingual_str error;
148
0
        if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
  Branch (148:13): [True: 0, False: 0]
149
0
            if (!NetPermissions::HasFlag(whitebind.m_flags, NetPermissionFlags::NoBan)) {
  Branch (149:17): [True: 0, False: 0]
150
0
                return whitebind.m_service.GetPort();
151
0
            }
152
0
        }
153
0
    }
154
155
    // Otherwise, if -port= is provided, use that. Otherwise use the default port.
156
0
    return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
157
0
}
158
159
// Determine the "best" local address for a particular peer.
160
[[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
161
0
{
162
0
    if (!fListen) return std::nullopt;
  Branch (162:9): [True: 0, False: 0]
163
164
0
    std::optional<CService> addr;
165
0
    int nBestScore = -1;
166
0
    int nBestReachability = -1;
167
0
    {
168
0
        LOCK(g_maplocalhost_mutex);
169
0
        for (const auto& [local_addr, local_service_info] : mapLocalHost) {
  Branch (169:59): [True: 0, False: 0]
170
            // For privacy reasons, don't advertise our privacy-network address
171
            // to other networks and don't advertise our other-network address
172
            // to privacy networks.
173
0
            if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
  Branch (173:17): [True: 0, False: 0]
174
0
                && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
  Branch (174:21): [True: 0, False: 0]
  Branch (174:50): [True: 0, False: 0]
175
0
                continue;
176
0
            }
177
0
            const int nScore{local_service_info.nScore};
178
0
            const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
179
0
            if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
  Branch (179:17): [True: 0, False: 0]
  Branch (179:55): [True: 0, False: 0]
  Branch (179:93): [True: 0, False: 0]
180
0
                addr.emplace(CService{local_addr, local_service_info.nPort});
181
0
                nBestReachability = nReachability;
182
0
                nBestScore = nScore;
183
0
            }
184
0
        }
185
0
    }
186
0
    return addr;
187
0
}
188
189
//! Convert the serialized seeds into usable address objects.
190
static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
191
0
{
192
    // It'll only connect to one or two seed nodes because once it connects,
193
    // it'll get a pile of addresses with newer timestamps.
194
    // Seed nodes are given a random 'last seen time' of between one and two
195
    // weeks ago.
196
0
    const auto one_week{7 * 24h};
197
0
    std::vector<CAddress> vSeedsOut;
198
0
    FastRandomContext rng;
199
0
    ParamsStream s{DataStream{vSeedsIn}, CAddress::V2_NETWORK};
200
0
    while (!s.eof()) {
  Branch (200:12): [True: 0, False: 0]
201
0
        CService endpoint;
202
0
        s >> endpoint;
203
0
        CAddress addr{endpoint, SeedsServiceFlags()};
204
0
        addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
205
0
        LogPrint(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
206
0
        vSeedsOut.push_back(addr);
207
0
    }
208
0
    return vSeedsOut;
209
0
}
210
211
// Determine the "best" local address for a particular peer.
212
// If none, return the unroutable 0.0.0.0 but filled in with
213
// the normal parameters, since the IP may be changed to a useful
214
// one by discovery.
215
CService GetLocalAddress(const CNode& peer)
216
0
{
217
0
    return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
218
0
}
219
220
static int GetnScore(const CService& addr)
221
0
{
222
0
    LOCK(g_maplocalhost_mutex);
223
0
    const auto it = mapLocalHost.find(addr);
224
0
    return (it != mapLocalHost.end()) ? it->second.nScore : 0;
  Branch (224:12): [True: 0, False: 0]
225
0
}
226
227
// Is our peer's addrLocal potentially useful as an external IP source?
228
[[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
229
0
{
230
0
    CService addrLocal = pnode->GetAddrLocal();
231
0
    return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
  Branch (231:12): [True: 0, False: 0]
  Branch (231:25): [True: 0, False: 0]
  Branch (231:53): [True: 0, False: 0]
232
0
           g_reachable_nets.Contains(addrLocal);
  Branch (232:12): [True: 0, False: 0]
233
0
}
234
235
std::optional<CService> GetLocalAddrForPeer(CNode& node)
236
0
{
237
0
    CService addrLocal{GetLocalAddress(node)};
238
    // If discovery is enabled, sometimes give our peer the address it
239
    // tells us that it sees us as in case it has a better idea of our
240
    // address than we do.
241
0
    FastRandomContext rng;
242
0
    if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
  Branch (242:9): [True: 0, False: 0]
  Branch (242:40): [True: 0, False: 0]
243
0
         rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
  Branch (243:10): [True: 0, False: 0]
  Branch (243:23): [True: 0, False: 0]
244
0
    {
245
0
        if (node.IsInboundConn()) {
  Branch (245:13): [True: 0, False: 0]
246
            // For inbound connections, assume both the address and the port
247
            // as seen from the peer.
248
0
            addrLocal = CService{node.GetAddrLocal()};
249
0
        } else {
250
            // For outbound connections, assume just the address as seen from
251
            // the peer and leave the port in `addrLocal` as returned by
252
            // `GetLocalAddress()` above. The peer has no way to observe our
253
            // listening port when we have initiated the connection.
254
0
            addrLocal.SetIP(node.GetAddrLocal());
255
0
        }
256
0
    }
257
0
    if (addrLocal.IsRoutable()) {
  Branch (257:9): [True: 0, False: 0]
258
0
        LogPrint(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
259
0
        return addrLocal;
260
0
    }
261
    // Address is unroutable. Don't advertise.
262
0
    return std::nullopt;
263
0
}
264
265
// learn a new local address
266
bool AddLocal(const CService& addr_, int nScore)
267
0
{
268
0
    CService addr{MaybeFlipIPv6toCJDNS(addr_)};
269
270
0
    if (!addr.IsRoutable())
  Branch (270:9): [True: 0, False: 0]
271
0
        return false;
272
273
0
    if (!fDiscover && nScore < LOCAL_MANUAL)
  Branch (273:9): [True: 0, False: 0]
  Branch (273:23): [True: 0, False: 0]
274
0
        return false;
275
276
0
    if (!g_reachable_nets.Contains(addr))
  Branch (276:9): [True: 0, False: 0]
277
0
        return false;
278
279
0
    LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
280
281
0
    {
282
0
        LOCK(g_maplocalhost_mutex);
283
0
        const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
284
0
        LocalServiceInfo &info = it->second;
285
0
        if (is_newly_added || nScore >= info.nScore) {
  Branch (285:13): [True: 0, False: 0]
  Branch (285:31): [True: 0, False: 0]
286
0
            info.nScore = nScore + (is_newly_added ? 0 : 1);
  Branch (286:37): [True: 0, False: 0]
287
0
            info.nPort = addr.GetPort();
288
0
        }
289
0
    }
290
291
0
    return true;
292
0
}
293
294
bool AddLocal(const CNetAddr &addr, int nScore)
295
0
{
296
0
    return AddLocal(CService(addr, GetListenPort()), nScore);
297
0
}
298
299
void RemoveLocal(const CService& addr)
300
0
{
301
0
    LOCK(g_maplocalhost_mutex);
302
0
    LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
303
0
    mapLocalHost.erase(addr);
304
0
}
305
306
/** vote for a local address */
307
bool SeenLocal(const CService& addr)
308
0
{
309
0
    LOCK(g_maplocalhost_mutex);
310
0
    const auto it = mapLocalHost.find(addr);
311
0
    if (it == mapLocalHost.end()) return false;
  Branch (311:9): [True: 0, False: 0]
312
0
    ++it->second.nScore;
313
0
    return true;
314
0
}
315
316
317
/** check whether a given address is potentially local */
318
bool IsLocal(const CService& addr)
319
0
{
320
0
    LOCK(g_maplocalhost_mutex);
321
0
    return mapLocalHost.count(addr) > 0;
322
0
}
323
324
CNode* CConnman::FindNode(const CNetAddr& ip)
325
0
{
326
0
    LOCK(m_nodes_mutex);
327
0
    for (CNode* pnode : m_nodes) {
  Branch (327:23): [True: 0, False: 0]
328
0
      if (static_cast<CNetAddr>(pnode->addr) == ip) {
  Branch (328:11): [True: 0, False: 0]
329
0
            return pnode;
330
0
        }
331
0
    }
332
0
    return nullptr;
333
0
}
334
335
CNode* CConnman::FindNode(const std::string& addrName)
336
0
{
337
0
    LOCK(m_nodes_mutex);
338
0
    for (CNode* pnode : m_nodes) {
  Branch (338:23): [True: 0, False: 0]
339
0
        if (pnode->m_addr_name == addrName) {
  Branch (339:13): [True: 0, False: 0]
340
0
            return pnode;
341
0
        }
342
0
    }
343
0
    return nullptr;
344
0
}
345
346
CNode* CConnman::FindNode(const CService& addr)
347
0
{
348
0
    LOCK(m_nodes_mutex);
349
0
    for (CNode* pnode : m_nodes) {
  Branch (349:23): [True: 0, False: 0]
350
0
        if (static_cast<CService>(pnode->addr) == addr) {
  Branch (350:13): [True: 0, False: 0]
351
0
            return pnode;
352
0
        }
353
0
    }
354
0
    return nullptr;
355
0
}
356
357
bool CConnman::AlreadyConnectedToAddress(const CAddress& addr)
358
0
{
359
0
    return FindNode(static_cast<CNetAddr>(addr)) || FindNode(addr.ToStringAddrPort());
  Branch (359:12): [True: 0, False: 0]
  Branch (359:53): [True: 0, False: 0]
360
0
}
361
362
bool CConnman::CheckIncomingNonce(uint64_t nonce)
363
290
{
364
290
    LOCK(m_nodes_mutex);
365
580
    for (const CNode* pnode : m_nodes) {
  Branch (365:29): [True: 580, False: 290]
366
580
        if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
  Branch (366:13): [True: 0, False: 580]
  Branch (366:47): [True: 0, False: 0]
  Branch (366:74): [True: 0, False: 0]
367
0
            return false;
368
580
    }
369
290
    return true;
370
290
}
371
372
/** Get the bind address for a socket as CAddress */
373
static CAddress GetBindAddress(const Sock& sock)
374
0
{
375
0
    CAddress addr_bind;
376
0
    struct sockaddr_storage sockaddr_bind;
377
0
    socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
378
0
    if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
  Branch (378:9): [True: 0, False: 0]
379
0
        addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind);
380
0
    } else {
381
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
382
0
    }
383
0
    return addr_bind;
384
0
}
385
386
CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport)
387
0
{
388
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
389
0
    assert(conn_type != ConnectionType::INBOUND);
390
391
0
    if (pszDest == nullptr) {
  Branch (391:9): [True: 0, False: 0]
392
0
        if (IsLocal(addrConnect))
  Branch (392:13): [True: 0, False: 0]
393
0
            return nullptr;
394
395
        // Look for an existing connection
396
0
        CNode* pnode = FindNode(static_cast<CService>(addrConnect));
397
0
        if (pnode)
  Branch (397:13): [True: 0, False: 0]
398
0
        {
399
0
            LogPrintf("Failed to open new connection, already connected\n");
400
0
            return nullptr;
401
0
        }
402
0
    }
403
404
0
    LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
405
0
        use_v2transport ? "v2" : "v1",
406
0
        pszDest ? pszDest : addrConnect.ToStringAddrPort(),
407
0
        Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
408
409
    // Resolve
410
0
    const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
  Branch (410:33): [True: 0, False: 0]
411
0
                                                     m_params.GetDefaultPort()};
412
413
    // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
414
0
    std::vector<CAddress> connect_to{};
415
0
    if (pszDest) {
  Branch (415:9): [True: 0, False: 0]
416
0
        std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
  Branch (416:70): [True: 0, False: 0]
  Branch (416:85): [True: 0, False: 0]
417
0
        if (!resolved.empty()) {
  Branch (417:13): [True: 0, False: 0]
418
0
            std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
419
            // If the connection is made by name, it can be the case that the name resolves to more than one address.
420
            // We don't want to connect any more of them if we are already connected to one
421
0
            for (const auto& r : resolved) {
  Branch (421:32): [True: 0, False: 0]
422
0
                addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
423
0
                if (!addrConnect.IsValid()) {
  Branch (423:21): [True: 0, False: 0]
424
0
                    LogPrint(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
425
0
                    return nullptr;
426
0
                }
427
                // It is possible that we already have a connection to the IP/port pszDest resolved to.
428
                // In that case, drop the connection that was just created.
429
0
                LOCK(m_nodes_mutex);
430
0
                CNode* pnode = FindNode(static_cast<CService>(addrConnect));
431
0
                if (pnode) {
  Branch (431:21): [True: 0, False: 0]
432
0
                    LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
433
0
                    return nullptr;
434
0
                }
435
                // Add the address to the resolved addresses vector so we can try to connect to it later on
436
0
                connect_to.push_back(addrConnect);
437
0
            }
438
0
        } else {
439
            // For resolution via proxy
440
0
            connect_to.push_back(addrConnect);
441
0
        }
442
0
    } else {
443
        // Connect via addrConnect directly
444
0
        connect_to.push_back(addrConnect);
445
0
    }
446
447
    // Connect
448
0
    std::unique_ptr<Sock> sock;
449
0
    Proxy proxy;
450
0
    CAddress addr_bind;
451
0
    assert(!addr_bind.IsValid());
452
0
    std::unique_ptr<i2p::sam::Session> i2p_transient_session;
453
454
0
    for (auto& target_addr: connect_to) {
  Branch (454:27): [True: 0, False: 0]
455
0
        if (target_addr.IsValid()) {
  Branch (455:13): [True: 0, False: 0]
456
0
            const bool use_proxy{GetProxy(target_addr.GetNetwork(), proxy)};
457
0
            bool proxyConnectionFailed = false;
458
459
0
            if (target_addr.IsI2P() && use_proxy) {
  Branch (459:17): [True: 0, False: 0]
  Branch (459:40): [True: 0, False: 0]
460
0
                i2p::Connection conn;
461
0
                bool connected{false};
462
463
0
                if (m_i2p_sam_session) {
  Branch (463:21): [True: 0, False: 0]
464
0
                    connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
465
0
                } else {
466
0
                    {
467
0
                        LOCK(m_unused_i2p_sessions_mutex);
468
0
                        if (m_unused_i2p_sessions.empty()) {
  Branch (468:29): [True: 0, False: 0]
469
0
                            i2p_transient_session =
470
0
                                std::make_unique<i2p::sam::Session>(proxy, &interruptNet);
471
0
                        } else {
472
0
                            i2p_transient_session.swap(m_unused_i2p_sessions.front());
473
0
                            m_unused_i2p_sessions.pop();
474
0
                        }
475
0
                    }
476
0
                    connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
477
0
                    if (!connected) {
  Branch (477:25): [True: 0, False: 0]
478
0
                        LOCK(m_unused_i2p_sessions_mutex);
479
0
                        if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
  Branch (479:29): [True: 0, False: 0]
480
0
                            m_unused_i2p_sessions.emplace(i2p_transient_session.release());
481
0
                        }
482
0
                    }
483
0
                }
484
485
0
                if (connected) {
  Branch (485:21): [True: 0, False: 0]
486
0
                    sock = std::move(conn.sock);
487
0
                    addr_bind = CAddress{conn.me, NODE_NONE};
488
0
                }
489
0
            } else if (use_proxy) {
  Branch (489:24): [True: 0, False: 0]
490
0
                LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
491
0
                sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
492
0
            } else {
493
                // no proxy needed (none set for target network)
494
0
                sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
495
0
            }
496
0
            if (!proxyConnectionFailed) {
  Branch (496:17): [True: 0, False: 0]
497
                // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
498
                // the proxy, mark this as an attempt.
499
0
                addrman.Attempt(target_addr, fCountFailure);
500
0
            }
501
0
        } else if (pszDest && GetNameProxy(proxy)) {
  Branch (501:20): [True: 0, False: 0]
  Branch (501:31): [True: 0, False: 0]
502
0
            std::string host;
503
0
            uint16_t port{default_port};
504
0
            SplitHostPort(std::string(pszDest), port, host);
505
0
            bool proxyConnectionFailed;
506
0
            sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
507
0
        }
508
        // Check any other resolved address (if any) if we fail to connect
509
0
        if (!sock) {
  Branch (509:13): [True: 0, False: 0]
510
0
            continue;
511
0
        }
512
513
0
        NetPermissionFlags permission_flags = NetPermissionFlags::None;
514
0
        std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
  Branch (514:70): [True: 0, False: 0]
515
0
        AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
516
517
        // Add node
518
0
        NodeId id = GetNewNodeId();
519
0
        uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
520
0
        if (!addr_bind.IsValid()) {
  Branch (520:13): [True: 0, False: 0]
521
0
            addr_bind = GetBindAddress(*sock);
522
0
        }
523
0
        CNode* pnode = new CNode(id,
524
0
                                std::move(sock),
525
0
                                target_addr,
526
0
                                CalculateKeyedNetGroup(target_addr),
527
0
                                nonce,
528
0
                                addr_bind,
529
0
                                pszDest ? pszDest : "",
  Branch (529:33): [True: 0, False: 0]
530
0
                                conn_type,
531
0
                                /*inbound_onion=*/false,
532
0
                                CNodeOptions{
533
0
                                    .permission_flags = permission_flags,
534
0
                                    .i2p_sam_session = std::move(i2p_transient_session),
535
0
                                    .recv_flood_size = nReceiveFloodSize,
536
0
                                    .use_v2transport = use_v2transport,
537
0
                                });
538
0
        pnode->AddRef();
539
540
        // We're making a new connection, harvest entropy from the time (and our peer count)
541
0
        RandAddEvent((uint32_t)id);
542
543
0
        return pnode;
544
0
    }
545
546
0
    return nullptr;
547
0
}
548
549
void CNode::CloseSocketDisconnect()
550
870
{
551
870
    fDisconnect = true;
552
870
    LOCK(m_sock_mutex);
553
870
    if (m_sock) {
  Branch (553:9): [True: 0, False: 870]
554
0
        LogPrint(BCLog::NET, "disconnecting peer=%d\n", id);
555
0
        m_sock.reset();
556
0
    }
557
870
    m_i2p_sam_session.reset();
558
870
}
559
560
0
void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr, const std::vector<NetWhitelistPermissions>& ranges) const {
561
0
    for (const auto& subnet : ranges) {
  Branch (561:29): [True: 0, False: 0]
562
0
        if (subnet.m_subnet.Match(addr)) {
  Branch (562:13): [True: 0, False: 0]
563
0
            NetPermissions::AddFlag(flags, subnet.m_flags);
564
0
        }
565
0
    }
566
0
    if (NetPermissions::HasFlag(flags, NetPermissionFlags::Implicit)) {
  Branch (566:9): [True: 0, False: 0]
567
0
        NetPermissions::ClearFlag(flags, NetPermissionFlags::Implicit);
568
0
        if (whitelist_forcerelay) NetPermissions::AddFlag(flags, NetPermissionFlags::ForceRelay);
  Branch (568:13): [True: 0, False: 0]
569
0
        if (whitelist_relay) NetPermissions::AddFlag(flags, NetPermissionFlags::Relay);
  Branch (569:13): [True: 0, False: 0]
570
0
        NetPermissions::AddFlag(flags, NetPermissionFlags::Mempool);
571
0
        NetPermissions::AddFlag(flags, NetPermissionFlags::NoBan);
572
0
    }
573
0
}
574
575
CService CNode::GetAddrLocal() const
576
0
{
577
0
    AssertLockNotHeld(m_addr_local_mutex);
578
0
    LOCK(m_addr_local_mutex);
579
0
    return m_addr_local;
580
0
}
581
582
870
void CNode::SetAddrLocal(const CService& addrLocalIn) {
583
870
    AssertLockNotHeld(m_addr_local_mutex);
584
870
    LOCK(m_addr_local_mutex);
585
870
    if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
586
870
        m_addr_local = addrLocalIn;
587
870
    }
588
870
}
589
590
Network CNode::ConnectedThroughNetwork() const
591
0
{
592
0
    return m_inbound_onion ? NET_ONION : addr.GetNetClass();
  Branch (592:12): [True: 0, False: 0]
593
0
}
594
595
bool CNode::IsConnectedThroughPrivacyNet() const
596
0
{
597
0
    return m_inbound_onion || addr.IsPrivacyNet();
  Branch (597:12): [True: 0, False: 0]
  Branch (597:31): [True: 0, False: 0]
598
0
}
599
600
#undef X
601
0
#define X(name) stats.name = name
602
void CNode::CopyStats(CNodeStats& stats)
603
0
{
604
0
    stats.nodeid = this->GetId();
605
0
    X(addr);
606
0
    X(addrBind);
607
0
    stats.m_network = ConnectedThroughNetwork();
608
0
    X(m_last_send);
609
0
    X(m_last_recv);
610
0
    X(m_last_tx_time);
611
0
    X(m_last_block_time);
612
0
    X(m_connected);
613
0
    X(m_addr_name);
614
0
    X(nVersion);
615
0
    {
616
0
        LOCK(m_subver_mutex);
617
0
        X(cleanSubVer);
618
0
    }
619
0
    stats.fInbound = IsInboundConn();
620
0
    X(m_bip152_highbandwidth_to);
621
0
    X(m_bip152_highbandwidth_from);
622
0
    {
623
0
        LOCK(cs_vSend);
624
0
        X(mapSendBytesPerMsgType);
625
0
        X(nSendBytes);
626
0
    }
627
0
    {
628
0
        LOCK(cs_vRecv);
629
0
        X(mapRecvBytesPerMsgType);
630
0
        X(nRecvBytes);
631
0
        Transport::Info info = m_transport->GetInfo();
632
0
        stats.m_transport_type = info.transport_type;
633
0
        if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
  Branch (633:13): [True: 0, False: 0]
634
0
    }
635
0
    X(m_permission_flags);
636
637
0
    X(m_last_ping_time);
638
0
    X(m_min_ping_time);
639
640
    // Leave string empty if addrLocal invalid (not filled in yet)
641
0
    CService addrLocalUnlocked = GetAddrLocal();
642
0
    stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
  Branch (642:23): [True: 0, False: 0]
643
644
0
    X(m_conn_type);
645
0
}
646
#undef X
647
648
bool CNode::ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete)
649
26.1k
{
650
26.1k
    complete = false;
651
26.1k
    const auto time = GetTime<std::chrono::microseconds>();
652
26.1k
    LOCK(cs_vRecv);
653
26.1k
    m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
654
26.1k
    nRecvBytes += msg_bytes.size();
655
52.3k
    while (msg_bytes.size() > 0) {
  Branch (655:12): [True: 26.1k, False: 26.1k]
656
        // absorb network data
657
26.1k
        if (!m_transport->ReceivedBytes(msg_bytes)) {
  Branch (657:13): [True: 0, False: 26.1k]
658
            // Serious transport problem, disconnect from the peer.
659
0
            return false;
660
0
        }
661
662
26.1k
        if (m_transport->ReceivedMessageComplete()) {
  Branch (662:13): [True: 13.5k, False: 12.6k]
663
            // decompose a transport agnostic CNetMessage from the deserializer
664
13.5k
            bool reject_message{false};
665
13.5k
            CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
666
13.5k
            if (reject_message) {
  Branch (666:17): [True: 0, False: 13.5k]
667
                // Message deserialization failed. Drop the message but don't disconnect the peer.
668
                // store the size of the corrupt message
669
0
                mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
670
0
                continue;
671
0
            }
672
673
            // Store received bytes per message type.
674
            // To prevent a memory DOS, only allow known message types.
675
13.5k
            auto i = mapRecvBytesPerMsgType.find(msg.m_type);
676
13.5k
            if (i == mapRecvBytesPerMsgType.end()) {
  Branch (676:17): [True: 0, False: 13.5k]
677
0
                i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
678
0
            }
679
13.5k
            assert(i != mapRecvBytesPerMsgType.end());
680
13.5k
            i->second += msg.m_raw_message_size;
681
682
            // push the message to the process queue,
683
13.5k
            vRecvMsg.push_back(std::move(msg));
684
685
13.5k
            complete = true;
686
13.5k
        }
687
26.1k
    }
688
689
26.1k
    return true;
690
26.1k
}
691
692
V1Transport::V1Transport(const NodeId node_id) noexcept
693
870
    : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
694
870
{
695
870
    LOCK(m_recv_mutex);
696
870
    Reset();
697
870
}
698
699
Transport::Info V1Transport::GetInfo() const noexcept
700
580
{
701
580
    return {.transport_type = TransportProtocolType::V1, .session_id = {}};
702
580
}
703
704
int V1Transport::readHeader(Span<const uint8_t> msg_bytes)
705
13.5k
{
706
13.5k
    AssertLockHeld(m_recv_mutex);
707
    // copy data to temporary parsing buffer
708
13.5k
    unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
709
13.5k
    unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
710
711
13.5k
    memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
712
13.5k
    nHdrPos += nCopy;
713
714
    // if header incomplete, exit
715
13.5k
    if (nHdrPos < CMessageHeader::HEADER_SIZE)
  Branch (715:9): [True: 0, False: 13.5k]
716
0
        return nCopy;
717
718
    // deserialize to CMessageHeader
719
13.5k
    try {
720
13.5k
        hdrbuf >> hdr;
721
13.5k
    }
722
13.5k
    catch (const std::exception&) {
723
0
        LogPrint(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
724
0
        return -1;
725
0
    }
726
727
    // Check start string, network magic
728
13.5k
    if (hdr.pchMessageStart != m_magic_bytes) {
  Branch (728:9): [True: 0, False: 13.5k]
729
0
        LogPrint(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
730
0
        return -1;
731
0
    }
732
733
    // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
734
13.5k
    if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
  Branch (734:9): [True: 0, False: 13.5k]
  Branch (734:40): [True: 0, False: 13.5k]
735
0
        LogPrint(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetCommand()), hdr.nMessageSize, m_node_id);
736
0
        return -1;
737
0
    }
738
739
    // switch state to reading message data
740
13.5k
    in_data = true;
741
742
13.5k
    return nCopy;
743
13.5k
}
744
745
int V1Transport::readData(Span<const uint8_t> msg_bytes)
746
12.6k
{
747
12.6k
    AssertLockHeld(m_recv_mutex);
748
12.6k
    unsigned int nRemaining = hdr.nMessageSize - nDataPos;
749
12.6k
    unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
750
751
12.6k
    if (vRecv.size() < nDataPos + nCopy) {
  Branch (751:9): [True: 12.6k, False: 0]
752
        // Allocate up to 256 KiB ahead, but never more than the total message size.
753
12.6k
        vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
754
12.6k
    }
755
756
12.6k
    hasher.Write(msg_bytes.first(nCopy));
757
12.6k
    memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
758
12.6k
    nDataPos += nCopy;
759
760
12.6k
    return nCopy;
761
12.6k
}
762
763
const uint256& V1Transport::GetMessageHash() const
764
13.5k
{
765
13.5k
    AssertLockHeld(m_recv_mutex);
766
13.5k
    assert(CompleteInternal());
767
13.5k
    if (data_hash.IsNull())
  Branch (767:9): [True: 13.5k, False: 0]
768
13.5k
        hasher.Finalize(data_hash);
769
13.5k
    return data_hash;
770
13.5k
}
771
772
CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
773
13.5k
{
774
13.5k
    AssertLockNotHeld(m_recv_mutex);
775
    // Initialize out parameter
776
13.5k
    reject_message = false;
777
    // decompose a single CNetMessage from the TransportDeserializer
778
13.5k
    LOCK(m_recv_mutex);
779
13.5k
    CNetMessage msg(std::move(vRecv));
780
781
    // store message type string, time, and sizes
782
13.5k
    msg.m_type = hdr.GetCommand();
783
13.5k
    msg.m_time = time;
784
13.5k
    msg.m_message_size = hdr.nMessageSize;
785
13.5k
    msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
786
787
13.5k
    uint256 hash = GetMessageHash();
788
789
    // We just received a message off the wire, harvest entropy from the time (and the message checksum)
790
13.5k
    RandAddEvent(ReadLE32(hash.begin()));
791
792
    // Check checksum and header message type string
793
13.5k
    if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
  Branch (793:9): [True: 0, False: 13.5k]
794
0
        LogPrint(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
795
0
                 SanitizeString(msg.m_type), msg.m_message_size,
796
0
                 HexStr(Span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
797
0
                 HexStr(hdr.pchChecksum),
798
0
                 m_node_id);
799
0
        reject_message = true;
800
13.5k
    } else if (!hdr.IsCommandValid()) {
  Branch (800:16): [True: 0, False: 13.5k]
801
0
        LogPrint(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
802
0
                 SanitizeString(hdr.GetCommand()), msg.m_message_size, m_node_id);
803
0
        reject_message = true;
804
0
    }
805
806
    // Always reset the network deserializer (prepare for the next message)
807
13.5k
    Reset();
808
13.5k
    return msg;
809
13.5k
}
810
811
bool V1Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
812
17.4k
{
813
17.4k
    AssertLockNotHeld(m_send_mutex);
814
    // Determine whether a new message can be set.
815
17.4k
    LOCK(m_send_mutex);
816
17.4k
    if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
  Branch (816:9): [True: 0, False: 17.4k]
  Branch (816:29): [True: 0, False: 17.4k]
817
818
    // create dbl-sha256 checksum
819
17.4k
    uint256 hash = Hash(msg.data);
820
821
    // create header
822
17.4k
    CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
823
17.4k
    memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
824
825
    // serialize header
826
17.4k
    m_header_to_send.clear();
827
17.4k
    VectorWriter{m_header_to_send, 0, hdr};
828
829
    // update state
830
17.4k
    m_message_to_send = std::move(msg);
831
17.4k
    m_sending_header = true;
832
17.4k
    m_bytes_sent = 0;
833
17.4k
    return true;
834
17.4k
}
835
836
Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
837
72.5k
{
838
72.5k
    AssertLockNotHeld(m_send_mutex);
839
72.5k
    LOCK(m_send_mutex);
840
72.5k
    if (m_sending_header) {
  Branch (840:9): [True: 25.7k, False: 46.7k]
841
25.7k
        return {Span{m_header_to_send}.subspan(m_bytes_sent),
842
                // We have more to send after the header if the message has payload, or if there
843
                // is a next message after that.
844
25.7k
                have_next_message || !m_message_to_send.data.empty(),
  Branch (844:17): [True: 4.63k, False: 21.1k]
  Branch (844:38): [True: 19.0k, False: 2.03k]
845
25.7k
                m_message_to_send.m_type
846
25.7k
               };
847
46.7k
    } else {
848
46.7k
        return {Span{m_message_to_send.data}.subspan(m_bytes_sent),
849
                // We only have more to send after this message's payload if there is another
850
                // message.
851
46.7k
                have_next_message,
852
46.7k
                m_message_to_send.m_type
853
46.7k
               };
854
46.7k
    }
855
72.5k
}
856
857
void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
858
32.9k
{
859
32.9k
    AssertLockNotHeld(m_send_mutex);
860
32.9k
    LOCK(m_send_mutex);
861
32.9k
    m_bytes_sent += bytes_sent;
862
32.9k
    if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
  Branch (862:9): [True: 17.2k, False: 15.7k]
  Branch (862:29): [True: 17.2k, False: 0]
863
        // We're done sending a message's header. Switch to sending its data bytes.
864
17.2k
        m_sending_header = false;
865
17.2k
        m_bytes_sent = 0;
866
17.2k
    } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
  Branch (866:16): [True: 15.7k, False: 0]
  Branch (866:37): [True: 15.7k, False: 0]
867
        // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
868
15.7k
        ClearShrink(m_message_to_send.data);
869
15.7k
        m_bytes_sent = 0;
870
15.7k
    }
871
32.9k
}
872
873
size_t V1Transport::GetSendMemoryUsage() const noexcept
874
12.4k
{
875
12.4k
    AssertLockNotHeld(m_send_mutex);
876
12.4k
    LOCK(m_send_mutex);
877
    // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
878
12.4k
    return m_message_to_send.GetMemoryUsage();
879
12.4k
}
880
881
namespace {
882
883
/** List of short messages as defined in BIP324, in order.
884
 *
885
 * Only message types that are actually implemented in this codebase need to be listed, as other
886
 * messages get ignored anyway - whether we know how to decode them or not.
887
 */
888
const std::array<std::string, 33> V2_MESSAGE_IDS = {
889
    "", // 12 bytes follow encoding the message type like in V1
890
    NetMsgType::ADDR,
891
    NetMsgType::BLOCK,
892
    NetMsgType::BLOCKTXN,
893
    NetMsgType::CMPCTBLOCK,
894
    NetMsgType::FEEFILTER,
895
    NetMsgType::FILTERADD,
896
    NetMsgType::FILTERCLEAR,
897
    NetMsgType::FILTERLOAD,
898
    NetMsgType::GETBLOCKS,
899
    NetMsgType::GETBLOCKTXN,
900
    NetMsgType::GETDATA,
901
    NetMsgType::GETHEADERS,
902
    NetMsgType::HEADERS,
903
    NetMsgType::INV,
904
    NetMsgType::MEMPOOL,
905
    NetMsgType::MERKLEBLOCK,
906
    NetMsgType::NOTFOUND,
907
    NetMsgType::PING,
908
    NetMsgType::PONG,
909
    NetMsgType::SENDCMPCT,
910
    NetMsgType::TX,
911
    NetMsgType::GETCFILTERS,
912
    NetMsgType::CFILTER,
913
    NetMsgType::GETCFHEADERS,
914
    NetMsgType::CFHEADERS,
915
    NetMsgType::GETCFCHECKPT,
916
    NetMsgType::CFCHECKPT,
917
    NetMsgType::ADDRV2,
918
    // Unimplemented message types that are assigned in BIP324:
919
    "",
920
    "",
921
    "",
922
    ""
923
};
924
925
class V2MessageMap
926
{
927
    std::unordered_map<std::string, uint8_t> m_map;
928
929
public:
930
    V2MessageMap() noexcept
931
0
    {
932
0
        for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
  Branch (932:28): [True: 0, False: 0]
933
0
            m_map.emplace(V2_MESSAGE_IDS[i], i);
934
0
        }
935
0
    }
936
937
    std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
938
0
    {
939
0
        auto it = m_map.find(message_name);
940
0
        if (it == m_map.end()) return std::nullopt;
  Branch (940:13): [True: 0, False: 0]
941
0
        return it->second;
942
0
    }
943
};
944
945
const V2MessageMap V2_MESSAGE_MAP;
946
947
std::vector<uint8_t> GenerateRandomGarbage() noexcept
948
0
{
949
0
    std::vector<uint8_t> ret;
950
0
    FastRandomContext rng;
951
0
    ret.resize(rng.randrange(V2Transport::MAX_GARBAGE_LEN + 1));
952
0
    rng.fillrand(MakeWritableByteSpan(ret));
953
0
    return ret;
954
0
}
955
956
} // namespace
957
958
void V2Transport::StartSendingHandshake() noexcept
959
0
{
960
0
    AssertLockHeld(m_send_mutex);
961
0
    Assume(m_send_state == SendState::AWAITING_KEY);
962
0
    Assume(m_send_buffer.empty());
963
    // Initialize the send buffer with ellswift pubkey + provided garbage.
964
0
    m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
965
0
    std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
966
0
    std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
967
    // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
968
0
}
969
970
V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
971
0
    : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
972
0
      m_v1_fallback{nodeid},
973
0
      m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
  Branch (973:20): [True: 0, False: 0]
974
0
      m_send_garbage{std::move(garbage)},
975
0
      m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
  Branch (975:20): [True: 0, False: 0]
976
0
{
977
0
    Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
978
    // Start sending immediately if we're the initiator of the connection.
979
0
    if (initiating) {
  Branch (979:9): [True: 0, False: 0]
980
0
        LOCK(m_send_mutex);
981
0
        StartSendingHandshake();
982
0
    }
983
0
}
984
985
V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
986
0
    : V2Transport{nodeid, initiating, GenerateRandomKey(),
987
0
                  MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
988
989
void V2Transport::SetReceiveState(RecvState recv_state) noexcept
990
0
{
991
0
    AssertLockHeld(m_recv_mutex);
992
    // Enforce allowed state transitions.
993
0
    switch (m_recv_state) {
  Branch (993:13): [True: 0, False: 0]
994
0
    case RecvState::KEY_MAYBE_V1:
  Branch (994:5): [True: 0, False: 0]
995
0
        Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
996
0
        break;
997
0
    case RecvState::KEY:
  Branch (997:5): [True: 0, False: 0]
998
0
        Assume(recv_state == RecvState::GARB_GARBTERM);
999
0
        break;
1000
0
    case RecvState::GARB_GARBTERM:
  Branch (1000:5): [True: 0, False: 0]
1001
0
        Assume(recv_state == RecvState::VERSION);
1002
0
        break;
1003
0
    case RecvState::VERSION:
  Branch (1003:5): [True: 0, False: 0]
1004
0
        Assume(recv_state == RecvState::APP);
1005
0
        break;
1006
0
    case RecvState::APP:
  Branch (1006:5): [True: 0, False: 0]
1007
0
        Assume(recv_state == RecvState::APP_READY);
1008
0
        break;
1009
0
    case RecvState::APP_READY:
  Branch (1009:5): [True: 0, False: 0]
1010
0
        Assume(recv_state == RecvState::APP);
1011
0
        break;
1012
0
    case RecvState::V1:
  Branch (1012:5): [True: 0, False: 0]
1013
0
        Assume(false); // V1 state cannot be left
1014
0
        break;
1015
0
    }
1016
    // Change state.
1017
0
    m_recv_state = recv_state;
1018
0
}
1019
1020
void V2Transport::SetSendState(SendState send_state) noexcept
1021
0
{
1022
0
    AssertLockHeld(m_send_mutex);
1023
    // Enforce allowed state transitions.
1024
0
    switch (m_send_state) {
  Branch (1024:13): [True: 0, False: 0]
1025
0
    case SendState::MAYBE_V1:
  Branch (1025:5): [True: 0, False: 0]
1026
0
        Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1027
0
        break;
1028
0
    case SendState::AWAITING_KEY:
  Branch (1028:5): [True: 0, False: 0]
1029
0
        Assume(send_state == SendState::READY);
1030
0
        break;
1031
0
    case SendState::READY:
  Branch (1031:5): [True: 0, False: 0]
1032
0
    case SendState::V1:
  Branch (1032:5): [True: 0, False: 0]
1033
0
        Assume(false); // Final states
1034
0
        break;
1035
0
    }
1036
    // Change state.
1037
0
    m_send_state = send_state;
1038
0
}
1039
1040
bool V2Transport::ReceivedMessageComplete() const noexcept
1041
0
{
1042
0
    AssertLockNotHeld(m_recv_mutex);
1043
0
    LOCK(m_recv_mutex);
1044
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
  Branch (1044:9): [True: 0, False: 0]
1045
1046
0
    return m_recv_state == RecvState::APP_READY;
1047
0
}
1048
1049
void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
1050
0
{
1051
0
    AssertLockHeld(m_recv_mutex);
1052
0
    AssertLockNotHeld(m_send_mutex);
1053
0
    Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1054
    // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1055
    // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1056
    // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1057
    // sending of the key.
1058
0
    std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1059
0
    std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1060
0
    Assume(m_recv_buffer.size() <= v1_prefix.size());
1061
0
    if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
  Branch (1061:9): [True: 0, False: 0]
1062
        // Mismatch with v1 prefix, so we can assume a v2 connection.
1063
0
        SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1064
        // Transition the sender to AWAITING_KEY state and start sending.
1065
0
        LOCK(m_send_mutex);
1066
0
        SetSendState(SendState::AWAITING_KEY);
1067
0
        StartSendingHandshake();
1068
0
    } else if (m_recv_buffer.size() == v1_prefix.size()) {
  Branch (1068:16): [True: 0, False: 0]
1069
        // Full match with the v1 prefix, so fall back to v1 behavior.
1070
0
        LOCK(m_send_mutex);
1071
0
        Span<const uint8_t> feedback{m_recv_buffer};
1072
        // Feed already received bytes to v1 transport. It should always accept these, because it's
1073
        // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1074
0
        bool ret = m_v1_fallback.ReceivedBytes(feedback);
1075
0
        Assume(feedback.empty());
1076
0
        Assume(ret);
1077
0
        SetReceiveState(RecvState::V1);
1078
0
        SetSendState(SendState::V1);
1079
        // Reset v2 transport buffers to save memory.
1080
0
        ClearShrink(m_recv_buffer);
1081
0
        ClearShrink(m_send_buffer);
1082
0
    } else {
1083
        // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1084
0
    }
1085
0
}
1086
1087
bool V2Transport::ProcessReceivedKeyBytes() noexcept
1088
0
{
1089
0
    AssertLockHeld(m_recv_mutex);
1090
0
    AssertLockNotHeld(m_send_mutex);
1091
0
    Assume(m_recv_state == RecvState::KEY);
1092
0
    Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1093
1094
    // As a special exception, if bytes 4-16 of the key on a responder connection match the
1095
    // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1096
    // (if they did, we'd have switched to V1 state already), assume this is a peer from
1097
    // another network, and disconnect them. They will almost certainly disconnect us too when
1098
    // they receive our uniformly random key and garbage, but detecting this case specially
1099
    // means we can log it.
1100
0
    static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1101
0
    static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1102
0
    if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
  Branch (1102:9): [True: 0, False: 0]
  Branch (1102:26): [True: 0, False: 0]
1103
0
        if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
  Branch (1103:13): [True: 0, False: 0]
1104
0
            LogPrint(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1105
0
                     HexStr(Span(m_recv_buffer).first(OFFSET)));
1106
0
            return false;
1107
0
        }
1108
0
    }
1109
1110
0
    if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
  Branch (1110:9): [True: 0, False: 0]
1111
        // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1112
        // our key to initialize the encryption ciphers.
1113
1114
        // Initialize the ciphers.
1115
0
        EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1116
0
        LOCK(m_send_mutex);
1117
0
        m_cipher.Initialize(ellswift, m_initiating);
1118
1119
        // Switch receiver state to GARB_GARBTERM.
1120
0
        SetReceiveState(RecvState::GARB_GARBTERM);
1121
0
        m_recv_buffer.clear();
1122
1123
        // Switch sender state to READY.
1124
0
        SetSendState(SendState::READY);
1125
1126
        // Append the garbage terminator to the send buffer.
1127
0
        m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1128
0
        std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1129
0
                  m_cipher.GetSendGarbageTerminator().end(),
1130
0
                  MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1131
1132
        // Construct version packet in the send buffer, with the sent garbage data as AAD.
1133
0
        m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1134
0
        m_cipher.Encrypt(
1135
0
            /*contents=*/VERSION_CONTENTS,
1136
0
            /*aad=*/MakeByteSpan(m_send_garbage),
1137
0
            /*ignore=*/false,
1138
0
            /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1139
        // We no longer need the garbage.
1140
0
        ClearShrink(m_send_garbage);
1141
0
    } else {
1142
        // We still have to receive more key bytes.
1143
0
    }
1144
0
    return true;
1145
0
}
1146
1147
bool V2Transport::ProcessReceivedGarbageBytes() noexcept
1148
0
{
1149
0
    AssertLockHeld(m_recv_mutex);
1150
0
    Assume(m_recv_state == RecvState::GARB_GARBTERM);
1151
0
    Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1152
0
    if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
  Branch (1152:9): [True: 0, False: 0]
1153
0
        if (MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN) == m_cipher.GetReceiveGarbageTerminator()) {
  Branch (1153:13): [True: 0, False: 0]
1154
            // Garbage terminator received. Store garbage to authenticate it as AAD later.
1155
0
            m_recv_aad = std::move(m_recv_buffer);
1156
0
            m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1157
0
            m_recv_buffer.clear();
1158
0
            SetReceiveState(RecvState::VERSION);
1159
0
        } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
  Branch (1159:20): [True: 0, False: 0]
1160
            // We've reached the maximum length for garbage + garbage terminator, and the
1161
            // terminator still does not match. Abort.
1162
0
            LogPrint(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1163
0
            return false;
1164
0
        } else {
1165
            // We still need to receive more garbage and/or garbage terminator bytes.
1166
0
        }
1167
0
    } else {
1168
        // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1169
        // more first.
1170
0
    }
1171
0
    return true;
1172
0
}
1173
1174
bool V2Transport::ProcessReceivedPacketBytes() noexcept
1175
0
{
1176
0
    AssertLockHeld(m_recv_mutex);
1177
0
    Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1178
1179
    // The maximum permitted contents length for a packet, consisting of:
1180
    // - 0x00 byte: indicating long message type encoding
1181
    // - 12 bytes of message type
1182
    // - payload
1183
0
    static constexpr size_t MAX_CONTENTS_LEN =
1184
0
        1 + CMessageHeader::COMMAND_SIZE +
1185
0
        std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1186
1187
0
    if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
  Branch (1187:9): [True: 0, False: 0]
1188
        // Length descriptor received.
1189
0
        m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1190
0
        if (m_recv_len > MAX_CONTENTS_LEN) {
  Branch (1190:13): [True: 0, False: 0]
1191
0
            LogPrint(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1192
0
            return false;
1193
0
        }
1194
0
    } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
  Branch (1194:16): [True: 0, False: 0]
  Branch (1194:67): [True: 0, False: 0]
1195
        // Ciphertext received, decrypt it into m_recv_decode_buffer.
1196
        // Note that it is impossible to reach this branch without hitting the branch above first,
1197
        // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1198
0
        m_recv_decode_buffer.resize(m_recv_len);
1199
0
        bool ignore{false};
1200
0
        bool ret = m_cipher.Decrypt(
1201
0
            /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1202
0
            /*aad=*/MakeByteSpan(m_recv_aad),
1203
0
            /*ignore=*/ignore,
1204
0
            /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1205
0
        if (!ret) {
  Branch (1205:13): [True: 0, False: 0]
1206
0
            LogPrint(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1207
0
            return false;
1208
0
        }
1209
        // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1210
0
        ClearShrink(m_recv_aad);
1211
        // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1212
0
        RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1213
1214
        // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1215
        // decoy, which we simply ignore, use the current state to decide what to do with it.
1216
0
        if (!ignore) {
  Branch (1216:13): [True: 0, False: 0]
1217
0
            switch (m_recv_state) {
1218
0
            case RecvState::VERSION:
  Branch (1218:13): [True: 0, False: 0]
1219
                // Version message received; transition to application phase. The contents is
1220
                // ignored, but can be used for future extensions.
1221
0
                SetReceiveState(RecvState::APP);
1222
0
                break;
1223
0
            case RecvState::APP:
  Branch (1223:13): [True: 0, False: 0]
1224
                // Application message decrypted correctly. It can be extracted using GetMessage().
1225
0
                SetReceiveState(RecvState::APP_READY);
1226
0
                break;
1227
0
            default:
  Branch (1227:13): [True: 0, False: 0]
1228
                // Any other state is invalid (this function should not have been called).
1229
0
                Assume(false);
1230
0
            }
1231
0
        }
1232
        // Wipe the receive buffer where the next packet will be received into.
1233
0
        ClearShrink(m_recv_buffer);
1234
        // In all but APP_READY state, we can wipe the decoded contents.
1235
0
        if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
  Branch (1235:13): [True: 0, False: 0]
1236
0
    } else {
1237
        // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1238
        // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1239
0
    }
1240
0
    return true;
1241
0
}
1242
1243
size_t V2Transport::GetMaxBytesToProcess() noexcept
1244
0
{
1245
0
    AssertLockHeld(m_recv_mutex);
1246
0
    switch (m_recv_state) {
  Branch (1246:13): [True: 0, False: 0]
1247
0
    case RecvState::KEY_MAYBE_V1:
  Branch (1247:5): [True: 0, False: 0]
1248
        // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1249
        // receive buffer.
1250
0
        Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1251
        // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1252
        // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1253
        // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1254
        // back into the m_v1_fallback V1 transport.
1255
0
        return V1_PREFIX_LEN - m_recv_buffer.size();
1256
0
    case RecvState::KEY:
  Branch (1256:5): [True: 0, False: 0]
1257
        // During the KEY state, we only allow the 64-byte key into the receive buffer.
1258
0
        Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1259
        // As long as we have not received the other side's public key, don't receive more than
1260
        // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1261
        // key exchange first.
1262
0
        return EllSwiftPubKey::size() - m_recv_buffer.size();
1263
0
    case RecvState::GARB_GARBTERM:
  Branch (1263:5): [True: 0, False: 0]
1264
        // Process garbage bytes one by one (because terminator may appear anywhere).
1265
0
        return 1;
1266
0
    case RecvState::VERSION:
  Branch (1266:5): [True: 0, False: 0]
1267
0
    case RecvState::APP:
  Branch (1267:5): [True: 0, False: 0]
1268
        // These three states all involve decoding a packet. Process the length descriptor first,
1269
        // so that we know where the current packet ends (and we don't process bytes from the next
1270
        // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1271
0
        if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
  Branch (1271:13): [True: 0, False: 0]
1272
0
            return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1273
0
        } else {
1274
            // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1275
            // and encoded packet size, which includes the 3 bytes due to the packet length.
1276
            // When transitioning from receiving the packet length to receiving its ciphertext,
1277
            // the encrypted packet length is left in the receive buffer.
1278
0
            return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1279
0
        }
1280
0
    case RecvState::APP_READY:
  Branch (1280:5): [True: 0, False: 0]
1281
        // No bytes can be processed until GetMessage() is called.
1282
0
        return 0;
1283
0
    case RecvState::V1:
  Branch (1283:5): [True: 0, False: 0]
1284
        // Not allowed (must be dealt with by the caller).
1285
0
        Assume(false);
1286
0
        return 0;
1287
0
    }
1288
0
    Assume(false); // unreachable
1289
0
    return 0;
1290
0
}
1291
1292
bool V2Transport::ReceivedBytes(Span<const uint8_t>& msg_bytes) noexcept
1293
0
{
1294
0
    AssertLockNotHeld(m_recv_mutex);
1295
    /** How many bytes to allocate in the receive buffer at most above what is received so far. */
1296
0
    static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1297
1298
0
    LOCK(m_recv_mutex);
1299
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
  Branch (1299:9): [True: 0, False: 0]
1300
1301
    // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1302
    // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1303
    // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1304
    // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1305
0
    while (!msg_bytes.empty()) {
  Branch (1305:12): [True: 0, False: 0]
1306
        // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1307
0
        size_t max_read = GetMaxBytesToProcess();
1308
1309
        // Reserve space in the buffer if there is not enough.
1310
0
        if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
  Branch (1310:13): [True: 0, False: 0]
1311
0
            switch (m_recv_state) {
  Branch (1311:21): [True: 0, False: 0]
1312
0
            case RecvState::KEY_MAYBE_V1:
  Branch (1312:13): [True: 0, False: 0]
1313
0
            case RecvState::KEY:
  Branch (1313:13): [True: 0, False: 0]
1314
0
            case RecvState::GARB_GARBTERM:
  Branch (1314:13): [True: 0, False: 0]
1315
                // During the initial states (key/garbage), allocate once to fit the maximum (4111
1316
                // bytes).
1317
0
                m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1318
0
                break;
1319
0
            case RecvState::VERSION:
  Branch (1319:13): [True: 0, False: 0]
1320
0
            case RecvState::APP: {
  Branch (1320:13): [True: 0, False: 0]
1321
                // During states where a packet is being received, as much as is expected but never
1322
                // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1323
                // This means attackers that want to cause us to waste allocated memory are limited
1324
                // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1325
                // MAX_RESERVE_AHEAD more than they've actually sent us.
1326
0
                size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1327
0
                m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1328
0
                break;
1329
0
            }
1330
0
            case RecvState::APP_READY:
  Branch (1330:13): [True: 0, False: 0]
1331
                // The buffer is empty in this state.
1332
0
                Assume(m_recv_buffer.empty());
1333
0
                break;
1334
0
            case RecvState::V1:
  Branch (1334:13): [True: 0, False: 0]
1335
                // Should have bailed out above.
1336
0
                Assume(false);
1337
0
                break;
1338
0
            }
1339
0
        }
1340
1341
        // Can't read more than provided input.
1342
0
        max_read = std::min(msg_bytes.size(), max_read);
1343
        // Copy data to buffer.
1344
0
        m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1345
0
        msg_bytes = msg_bytes.subspan(max_read);
1346
1347
        // Process data in the buffer.
1348
0
        switch (m_recv_state) {
  Branch (1348:17): [True: 0, False: 0]
1349
0
        case RecvState::KEY_MAYBE_V1:
  Branch (1349:9): [True: 0, False: 0]
1350
0
            ProcessReceivedMaybeV1Bytes();
1351
0
            if (m_recv_state == RecvState::V1) return true;
  Branch (1351:17): [True: 0, False: 0]
1352
0
            break;
1353
1354
0
        case RecvState::KEY:
  Branch (1354:9): [True: 0, False: 0]
1355
0
            if (!ProcessReceivedKeyBytes()) return false;
  Branch (1355:17): [True: 0, False: 0]
1356
0
            break;
1357
1358
0
        case RecvState::GARB_GARBTERM:
  Branch (1358:9): [True: 0, False: 0]
1359
0
            if (!ProcessReceivedGarbageBytes()) return false;
  Branch (1359:17): [True: 0, False: 0]
1360
0
            break;
1361
1362
0
        case RecvState::VERSION:
  Branch (1362:9): [True: 0, False: 0]
1363
0
        case RecvState::APP:
  Branch (1363:9): [True: 0, False: 0]
1364
0
            if (!ProcessReceivedPacketBytes()) return false;
  Branch (1364:17): [True: 0, False: 0]
1365
0
            break;
1366
1367
0
        case RecvState::APP_READY:
  Branch (1367:9): [True: 0, False: 0]
1368
0
            return true;
1369
1370
0
        case RecvState::V1:
  Branch (1370:9): [True: 0, False: 0]
1371
            // We should have bailed out before.
1372
0
            Assume(false);
1373
0
            break;
1374
0
        }
1375
        // Make sure we have made progress before continuing.
1376
0
        Assume(max_read > 0);
1377
0
    }
1378
1379
0
    return true;
1380
0
}
1381
1382
std::optional<std::string> V2Transport::GetMessageType(Span<const uint8_t>& contents) noexcept
1383
0
{
1384
0
    if (contents.size() == 0) return std::nullopt; // Empty contents
  Branch (1384:9): [True: 0, False: 0]
1385
0
    uint8_t first_byte = contents[0];
1386
0
    contents = contents.subspan(1); // Strip first byte.
1387
1388
0
    if (first_byte != 0) {
  Branch (1388:9): [True: 0, False: 0]
1389
        // Short (1 byte) encoding.
1390
0
        if (first_byte < std::size(V2_MESSAGE_IDS)) {
  Branch (1390:13): [True: 0, False: 0]
1391
            // Valid short message id.
1392
0
            return V2_MESSAGE_IDS[first_byte];
1393
0
        } else {
1394
            // Unknown short message id.
1395
0
            return std::nullopt;
1396
0
        }
1397
0
    }
1398
1399
0
    if (contents.size() < CMessageHeader::COMMAND_SIZE) {
  Branch (1399:9): [True: 0, False: 0]
1400
0
        return std::nullopt; // Long encoding needs 12 message type bytes.
1401
0
    }
1402
1403
0
    size_t msg_type_len{0};
1404
0
    while (msg_type_len < CMessageHeader::COMMAND_SIZE && contents[msg_type_len] != 0) {
  Branch (1404:12): [True: 0, False: 0]
  Branch (1404:59): [True: 0, False: 0]
1405
        // Verify that message type bytes before the first 0x00 are in range.
1406
0
        if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
  Branch (1406:13): [True: 0, False: 0]
  Branch (1406:45): [True: 0, False: 0]
1407
0
            return {};
1408
0
        }
1409
0
        ++msg_type_len;
1410
0
    }
1411
0
    std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1412
0
    while (msg_type_len < CMessageHeader::COMMAND_SIZE) {
  Branch (1412:12): [True: 0, False: 0]
1413
        // Verify that message type bytes after the first 0x00 are also 0x00.
1414
0
        if (contents[msg_type_len] != 0) return {};
  Branch (1414:13): [True: 0, False: 0]
1415
0
        ++msg_type_len;
1416
0
    }
1417
    // Strip message type bytes of contents.
1418
0
    contents = contents.subspan(CMessageHeader::COMMAND_SIZE);
1419
0
    return ret;
1420
0
}
1421
1422
CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1423
0
{
1424
0
    AssertLockNotHeld(m_recv_mutex);
1425
0
    LOCK(m_recv_mutex);
1426
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
  Branch (1426:9): [True: 0, False: 0]
1427
1428
0
    Assume(m_recv_state == RecvState::APP_READY);
1429
0
    Span<const uint8_t> contents{m_recv_decode_buffer};
1430
0
    auto msg_type = GetMessageType(contents);
1431
0
    CNetMessage msg{DataStream{}};
1432
    // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1433
0
    msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1434
0
    if (msg_type) {
  Branch (1434:9): [True: 0, False: 0]
1435
0
        reject_message = false;
1436
0
        msg.m_type = std::move(*msg_type);
1437
0
        msg.m_time = time;
1438
0
        msg.m_message_size = contents.size();
1439
0
        msg.m_recv.resize(contents.size());
1440
0
        std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1441
0
    } else {
1442
0
        LogPrint(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1443
0
        reject_message = true;
1444
0
    }
1445
0
    ClearShrink(m_recv_decode_buffer);
1446
0
    SetReceiveState(RecvState::APP);
1447
1448
0
    return msg;
1449
0
}
1450
1451
bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
1452
0
{
1453
0
    AssertLockNotHeld(m_send_mutex);
1454
0
    LOCK(m_send_mutex);
1455
0
    if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
  Branch (1455:9): [True: 0, False: 0]
1456
    // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1457
    // is available) and the send buffer is empty. This limits the number of messages in the send
1458
    // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1459
0
    if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
  Branch (1459:11): [True: 0, False: 0]
  Branch (1459:47): [True: 0, False: 0]
1460
    // Construct contents (encoding message type + payload).
1461
0
    std::vector<uint8_t> contents;
1462
0
    auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1463
0
    if (short_message_id) {
  Branch (1463:9): [True: 0, False: 0]
1464
0
        contents.resize(1 + msg.data.size());
1465
0
        contents[0] = *short_message_id;
1466
0
        std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1467
0
    } else {
1468
        // Initialize with zeroes, and then write the message type string starting at offset 1.
1469
        // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1470
0
        contents.resize(1 + CMessageHeader::COMMAND_SIZE + msg.data.size(), 0);
1471
0
        std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1472
0
        std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::COMMAND_SIZE);
1473
0
    }
1474
    // Construct ciphertext in send buffer.
1475
0
    m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1476
0
    m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1477
0
    m_send_type = msg.m_type;
1478
    // Release memory
1479
0
    ClearShrink(msg.data);
1480
0
    return true;
1481
0
}
1482
1483
Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1484
0
{
1485
0
    AssertLockNotHeld(m_send_mutex);
1486
0
    LOCK(m_send_mutex);
1487
0
    if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
  Branch (1487:9): [True: 0, False: 0]
1488
1489
0
    if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
  Branch (1489:9): [True: 0, False: 0]
1490
0
    Assume(m_send_pos <= m_send_buffer.size());
1491
0
    return {
1492
0
        Span{m_send_buffer}.subspan(m_send_pos),
1493
        // We only have more to send after the current m_send_buffer if there is a (next)
1494
        // message to be sent, and we're capable of sending packets. */
1495
0
        have_next_message && m_send_state == SendState::READY,
  Branch (1495:9): [True: 0, False: 0]
  Branch (1495:30): [True: 0, False: 0]
1496
0
        m_send_type
1497
0
    };
1498
0
}
1499
1500
void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1501
0
{
1502
0
    AssertLockNotHeld(m_send_mutex);
1503
0
    LOCK(m_send_mutex);
1504
0
    if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
  Branch (1504:9): [True: 0, False: 0]
1505
1506
0
    if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
  Branch (1506:9): [True: 0, False: 0]
  Branch (1506:52): [True: 0, False: 0]
  Branch (1506:71): [True: 0, False: 0]
1507
0
        LogPrint(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1508
0
    }
1509
1510
0
    m_send_pos += bytes_sent;
1511
0
    Assume(m_send_pos <= m_send_buffer.size());
1512
0
    if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
  Branch (1512:9): [True: 0, False: 0]
1513
0
        m_sent_v1_header_worth = true;
1514
0
    }
1515
    // Wipe the buffer when everything is sent.
1516
0
    if (m_send_pos == m_send_buffer.size()) {
  Branch (1516:9): [True: 0, False: 0]
1517
0
        m_send_pos = 0;
1518
0
        ClearShrink(m_send_buffer);
1519
0
    }
1520
0
}
1521
1522
bool V2Transport::ShouldReconnectV1() const noexcept
1523
0
{
1524
0
    AssertLockNotHeld(m_send_mutex);
1525
0
    AssertLockNotHeld(m_recv_mutex);
1526
    // Only outgoing connections need reconnection.
1527
0
    if (!m_initiating) return false;
  Branch (1527:9): [True: 0, False: 0]
1528
1529
0
    LOCK(m_recv_mutex);
1530
    // We only reconnect in the very first state and when the receive buffer is empty. Together
1531
    // these conditions imply nothing has been received so far.
1532
0
    if (m_recv_state != RecvState::KEY) return false;
  Branch (1532:9): [True: 0, False: 0]
1533
0
    if (!m_recv_buffer.empty()) return false;
  Branch (1533:9): [True: 0, False: 0]
1534
    // Check if we've sent enough for the other side to disconnect us (if it was V1).
1535
0
    LOCK(m_send_mutex);
1536
0
    return m_sent_v1_header_worth;
1537
0
}
1538
1539
size_t V2Transport::GetSendMemoryUsage() const noexcept
1540
0
{
1541
0
    AssertLockNotHeld(m_send_mutex);
1542
0
    LOCK(m_send_mutex);
1543
0
    if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
  Branch (1543:9): [True: 0, False: 0]
1544
1545
0
    return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1546
0
}
1547
1548
Transport::Info V2Transport::GetInfo() const noexcept
1549
0
{
1550
0
    AssertLockNotHeld(m_recv_mutex);
1551
0
    LOCK(m_recv_mutex);
1552
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
  Branch (1552:9): [True: 0, False: 0]
1553
1554
0
    Transport::Info info;
1555
1556
    // Do not report v2 and session ID until the version packet has been received
1557
    // and verified (confirming that the other side very likely has the same keys as us).
1558
0
    if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
  Branch (1558:9): [True: 0, False: 0]
  Branch (1558:52): [True: 0, False: 0]
1559
0
        m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
  Branch (1559:9): [True: 0, False: 0]
  Branch (1559:53): [True: 0, False: 0]
1560
0
        info.transport_type = TransportProtocolType::V2;
1561
0
        info.session_id = uint256(MakeUCharSpan(m_cipher.GetSessionID()));
1562
0
    } else {
1563
0
        info.transport_type = TransportProtocolType::DETECTING;
1564
0
    }
1565
1566
0
    return info;
1567
0
}
1568
1569
std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1570
3.92k
{
1571
3.92k
    auto it = node.vSendMsg.begin();
1572
3.92k
    size_t nSentSize = 0;
1573
3.92k
    bool data_left{false}; //!< second return value (whether unsent data remains)
1574
3.92k
    std::optional<bool> expected_more;
1575
1576
3.92k
    while (true) {
  Branch (1576:12): [Folded - Ignored]
1577
3.92k
        if (it != node.vSendMsg.end()) {
  Branch (1577:13): [True: 3.92k, False: 0]
1578
            // If possible, move one message from the send queue to the transport. This fails when
1579
            // there is an existing message still being sent, or (for v2 transports) when the
1580
            // handshake has not yet completed.
1581
3.92k
            size_t memusage = it->GetMemoryUsage();
1582
3.92k
            if (node.m_transport->SetMessageToSend(*it)) {
  Branch (1582:17): [True: 3.92k, False: 0]
1583
                // Update memory usage of send buffer (as *it will be deleted).
1584
3.92k
                node.m_send_memusage -= memusage;
1585
3.92k
                ++it;
1586
3.92k
            }
1587
3.92k
        }
1588
3.92k
        const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1589
        // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1590
        // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1591
        // verify that the previously returned 'more' was correct.
1592
3.92k
        if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
  Branch (1592:13): [True: 0, False: 3.92k]
1593
3.92k
        expected_more = more;
1594
3.92k
        data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1595
3.92k
        int nBytes = 0;
1596
3.92k
        if (!data.empty()) {
  Branch (1596:13): [True: 3.92k, False: 0]
1597
3.92k
            LOCK(node.m_sock_mutex);
1598
            // There is no socket in case we've already disconnected, or in test cases without
1599
            // real connections. In these cases, we bail out immediately and just leave things
1600
            // in the send queue and transport.
1601
3.92k
            if (!node.m_sock) {
  Branch (1601:17): [True: 3.92k, False: 0]
1602
3.92k
                break;
1603
3.92k
            }
1604
0
            int flags = MSG_NOSIGNAL | MSG_DONTWAIT;
1605
0
#ifdef MSG_MORE
1606
0
            if (more) {
  Branch (1606:17): [True: 0, False: 0]
1607
0
                flags |= MSG_MORE;
1608
0
            }
1609
0
#endif
1610
0
            nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()), data.size(), flags);
1611
0
        }
1612
0
        if (nBytes > 0) {
  Branch (1612:13): [True: 0, False: 0]
1613
0
            node.m_last_send = GetTime<std::chrono::seconds>();
1614
0
            node.nSendBytes += nBytes;
1615
            // Notify transport that bytes have been processed.
1616
0
            node.m_transport->MarkBytesSent(nBytes);
1617
            // Update statistics per message type.
1618
0
            if (!msg_type.empty()) { // don't report v2 handshake bytes for now
  Branch (1618:17): [True: 0, False: 0]
1619
0
                node.AccountForSentBytes(msg_type, nBytes);
1620
0
            }
1621
0
            nSentSize += nBytes;
1622
0
            if ((size_t)nBytes != data.size()) {
  Branch (1622:17): [True: 0, False: 0]
1623
                // could not send full message; stop sending more
1624
0
                break;
1625
0
            }
1626
0
        } else {
1627
0
            if (nBytes < 0) {
  Branch (1627:17): [True: 0, False: 0]
1628
                // error
1629
0
                int nErr = WSAGetLastError();
1630
0
                if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
  Branch (1630:21): [True: 0, False: 0]
  Branch (1630:47): [True: 0, False: 0]
  Branch (1630:70): [True: 0, False: 0]
  Branch (1630:90): [True: 0, False: 0]
1631
0
                    LogPrint(BCLog::NET, "socket send error for peer=%d: %s\n", node.GetId(), NetworkErrorString(nErr));
1632
0
                    node.CloseSocketDisconnect();
1633
0
                }
1634
0
            }
1635
0
            break;
1636
0
        }
1637
0
    }
1638
1639
3.92k
    node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1640
1641
3.92k
    if (it == node.vSendMsg.end()) {
  Branch (1641:9): [True: 3.92k, False: 0]
1642
3.92k
        assert(node.m_send_memusage == 0);
1643
3.92k
    }
1644
3.92k
    node.vSendMsg.erase(node.vSendMsg.begin(), it);
1645
3.92k
    return {nSentSize, data_left};
1646
3.92k
}
1647
1648
/** Try to find a connection to evict when the node is full.
1649
 *  Extreme care must be taken to avoid opening the node to attacker
1650
 *   triggered network partitioning.
1651
 *  The strategy used here is to protect a small number of peers
1652
 *   for each of several distinct characteristics which are difficult
1653
 *   to forge.  In order to partition a node the attacker must be
1654
 *   simultaneously better at all of them than honest peers.
1655
 */
1656
bool CConnman::AttemptToEvictConnection()
1657
0
{
1658
0
    std::vector<NodeEvictionCandidate> vEvictionCandidates;
1659
0
    {
1660
1661
0
        LOCK(m_nodes_mutex);
1662
0
        for (const CNode* node : m_nodes) {
  Branch (1662:32): [True: 0, False: 0]
1663
0
            if (node->fDisconnect)
  Branch (1663:17): [True: 0, False: 0]
1664
0
                continue;
1665
0
            NodeEvictionCandidate candidate{
1666
0
                .id = node->GetId(),
1667
0
                .m_connected = node->m_connected,
1668
0
                .m_min_ping_time = node->m_min_ping_time,
1669
0
                .m_last_block_time = node->m_last_block_time,
1670
0
                .m_last_tx_time = node->m_last_tx_time,
1671
0
                .fRelevantServices = node->m_has_all_wanted_services,
1672
0
                .m_relay_txs = node->m_relays_txs.load(),
1673
0
                .fBloomFilter = node->m_bloom_filter_loaded.load(),
1674
0
                .nKeyedNetGroup = node->nKeyedNetGroup,
1675
0
                .prefer_evict = node->m_prefer_evict,
1676
0
                .m_is_local = node->addr.IsLocal(),
1677
0
                .m_network = node->ConnectedThroughNetwork(),
1678
0
                .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1679
0
                .m_conn_type = node->m_conn_type,
1680
0
            };
1681
0
            vEvictionCandidates.push_back(candidate);
1682
0
        }
1683
0
    }
1684
0
    const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1685
0
    if (!node_id_to_evict) {
  Branch (1685:9): [True: 0, False: 0]
1686
0
        return false;
1687
0
    }
1688
0
    LOCK(m_nodes_mutex);
1689
0
    for (CNode* pnode : m_nodes) {
  Branch (1689:23): [True: 0, False: 0]
1690
0
        if (pnode->GetId() == *node_id_to_evict) {
  Branch (1690:13): [True: 0, False: 0]
1691
0
            LogPrint(BCLog::NET, "selected %s connection for eviction peer=%d; disconnecting\n", pnode->ConnectionTypeAsString(), pnode->GetId());
1692
0
            pnode->fDisconnect = true;
1693
0
            return true;
1694
0
        }
1695
0
    }
1696
0
    return false;
1697
0
}
1698
1699
0
void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1700
0
    struct sockaddr_storage sockaddr;
1701
0
    socklen_t len = sizeof(sockaddr);
1702
0
    auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1703
0
    CAddress addr;
1704
1705
0
    if (!sock) {
  Branch (1705:9): [True: 0, False: 0]
1706
0
        const int nErr = WSAGetLastError();
1707
0
        if (nErr != WSAEWOULDBLOCK) {
  Branch (1707:13): [True: 0, False: 0]
1708
0
            LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1709
0
        }
1710
0
        return;
1711
0
    }
1712
1713
0
    if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) {
  Branch (1713:9): [True: 0, False: 0]
1714
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
1715
0
    } else {
1716
0
        addr = CAddress{MaybeFlipIPv6toCJDNS(addr), NODE_NONE};
1717
0
    }
1718
1719
0
    const CAddress addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock)), NODE_NONE};
1720
1721
0
    NetPermissionFlags permission_flags = NetPermissionFlags::None;
1722
0
    hListenSocket.AddSocketPermissionFlags(permission_flags);
1723
1724
0
    CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1725
0
}
1726
1727
void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1728
                                            NetPermissionFlags permission_flags,
1729
                                            const CAddress& addr_bind,
1730
                                            const CAddress& addr)
1731
0
{
1732
0
    int nInbound = 0;
1733
1734
0
    AddWhitelistPermissionFlags(permission_flags, addr, vWhitelistedRangeIncoming);
1735
1736
0
    {
1737
0
        LOCK(m_nodes_mutex);
1738
0
        for (const CNode* pnode : m_nodes) {
  Branch (1738:33): [True: 0, False: 0]
1739
0
            if (pnode->IsInboundConn()) nInbound++;
  Branch (1739:17): [True: 0, False: 0]
1740
0
        }
1741
0
    }
1742
1743
0
    if (!fNetworkActive) {
  Branch (1743:9): [True: 0, False: 0]
1744
0
        LogPrint(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1745
0
        return;
1746
0
    }
1747
1748
0
    if (!sock->IsSelectable()) {
  Branch (1748:9): [True: 0, False: 0]
1749
0
        LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1750
0
        return;
1751
0
    }
1752
1753
    // According to the internet TCP_NODELAY is not carried into accepted sockets
1754
    // on all platforms.  Set it again here just to be sure.
1755
0
    const int on{1};
1756
0
    if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
  Branch (1756:9): [True: 0, False: 0]
1757
0
        LogPrint(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1758
0
                 addr.ToStringAddrPort());
1759
0
    }
1760
1761
    // Don't accept connections from banned peers.
1762
0
    bool banned = m_banman && m_banman->IsBanned(addr);
  Branch (1762:19): [True: 0, False: 0]
  Branch (1762:31): [True: 0, False: 0]
1763
0
    if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
  Branch (1763:9): [True: 0, False: 0]
  Branch (1763:82): [True: 0, False: 0]
1764
0
    {
1765
0
        LogPrint(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1766
0
        return;
1767
0
    }
1768
1769
    // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1770
0
    bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
  Branch (1770:24): [True: 0, False: 0]
  Branch (1770:36): [True: 0, False: 0]
1771
0
    if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
  Branch (1771:9): [True: 0, False: 0]
  Branch (1771:82): [True: 0, False: 0]
  Branch (1771:115): [True: 0, False: 0]
1772
0
    {
1773
0
        LogPrint(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1774
0
        return;
1775
0
    }
1776
1777
0
    if (nInbound >= m_max_inbound)
  Branch (1777:9): [True: 0, False: 0]
1778
0
    {
1779
0
        if (!AttemptToEvictConnection()) {
  Branch (1779:13): [True: 0, False: 0]
1780
            // No connection to evict, disconnect the new connection
1781
0
            LogPrint(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1782
0
            return;
1783
0
        }
1784
0
    }
1785
1786
0
    NodeId id = GetNewNodeId();
1787
0
    uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
1788
1789
0
    const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1790
    // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1791
    // detected, so use it whenever we signal NODE_P2P_V2.
1792
0
    const bool use_v2transport(nLocalServices & NODE_P2P_V2);
1793
1794
0
    CNode* pnode = new CNode(id,
1795
0
                             std::move(sock),
1796
0
                             addr,
1797
0
                             CalculateKeyedNetGroup(addr),
1798
0
                             nonce,
1799
0
                             addr_bind,
1800
0
                             /*addrNameIn=*/"",
1801
0
                             ConnectionType::INBOUND,
1802
0
                             inbound_onion,
1803
0
                             CNodeOptions{
1804
0
                                 .permission_flags = permission_flags,
1805
0
                                 .prefer_evict = discouraged,
1806
0
                                 .recv_flood_size = nReceiveFloodSize,
1807
0
                                 .use_v2transport = use_v2transport,
1808
0
                             });
1809
0
    pnode->AddRef();
1810
0
    m_msgproc->InitializeNode(*pnode, nLocalServices);
1811
0
    {
1812
0
        LOCK(m_nodes_mutex);
1813
0
        m_nodes.push_back(pnode);
1814
0
    }
1815
0
    LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1816
1817
    // We received a new connection, harvest entropy from the time (and our peer count)
1818
0
    RandAddEvent((uint32_t)id);
1819
0
}
1820
1821
bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1822
0
{
1823
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
1824
0
    std::optional<int> max_connections;
1825
0
    switch (conn_type) {
  Branch (1825:13): [True: 0, False: 0]
1826
0
    case ConnectionType::INBOUND:
  Branch (1826:5): [True: 0, False: 0]
1827
0
    case ConnectionType::MANUAL:
  Branch (1827:5): [True: 0, False: 0]
1828
0
        return false;
1829
0
    case ConnectionType::OUTBOUND_FULL_RELAY:
  Branch (1829:5): [True: 0, False: 0]
1830
0
        max_connections = m_max_outbound_full_relay;
1831
0
        break;
1832
0
    case ConnectionType::BLOCK_RELAY:
  Branch (1832:5): [True: 0, False: 0]
1833
0
        max_connections = m_max_outbound_block_relay;
1834
0
        break;
1835
    // no limit for ADDR_FETCH because -seednode has no limit either
1836
0
    case ConnectionType::ADDR_FETCH:
  Branch (1836:5): [True: 0, False: 0]
1837
0
        break;
1838
    // no limit for FEELER connections since they're short-lived
1839
0
    case ConnectionType::FEELER:
  Branch (1839:5): [True: 0, False: 0]
1840
0
        break;
1841
0
    } // no default case, so the compiler can warn about missing cases
1842
1843
    // Count existing connections
1844
0
    int existing_connections = WITH_LOCK(m_nodes_mutex,
1845
0
                                         return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1846
1847
    // Max connections of specified type already exist
1848
0
    if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
  Branch (1848:9): [True: 0, False: 0]
  Branch (1848:44): [True: 0, False: 0]
1849
1850
    // Max total outbound connections already exist
1851
0
    CSemaphoreGrant grant(*semOutbound, true);
1852
0
    if (!grant) return false;
  Branch (1852:9): [True: 0, False: 0]
1853
1854
0
    OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1855
0
    return true;
1856
0
}
1857
1858
void CConnman::DisconnectNodes()
1859
0
{
1860
0
    AssertLockNotHeld(m_nodes_mutex);
1861
0
    AssertLockNotHeld(m_reconnections_mutex);
1862
1863
    // Use a temporary variable to accumulate desired reconnections, so we don't need
1864
    // m_reconnections_mutex while holding m_nodes_mutex.
1865
0
    decltype(m_reconnections) reconnections_to_add;
1866
1867
0
    {
1868
0
        LOCK(m_nodes_mutex);
1869
1870
0
        if (!fNetworkActive) {
  Branch (1870:13): [True: 0, False: 0]
1871
            // Disconnect any connected nodes
1872
0
            for (CNode* pnode : m_nodes) {
  Branch (1872:31): [True: 0, False: 0]
1873
0
                if (!pnode->fDisconnect) {
  Branch (1873:21): [True: 0, False: 0]
1874
0
                    LogPrint(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId());
1875
0
                    pnode->fDisconnect = true;
1876
0
                }
1877
0
            }
1878
0
        }
1879
1880
        // Disconnect unused nodes
1881
0
        std::vector<CNode*> nodes_copy = m_nodes;
1882
0
        for (CNode* pnode : nodes_copy)
  Branch (1882:27): [True: 0, False: 0]
1883
0
        {
1884
0
            if (pnode->fDisconnect)
  Branch (1884:17): [True: 0, False: 0]
1885
0
            {
1886
                // remove from m_nodes
1887
0
                m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1888
1889
                // Add to reconnection list if appropriate. We don't reconnect right here, because
1890
                // the creation of a connection is a blocking operation (up to several seconds),
1891
                // and we don't want to hold up the socket handler thread for that long.
1892
0
                if (pnode->m_transport->ShouldReconnectV1()) {
  Branch (1892:21): [True: 0, False: 0]
1893
0
                    reconnections_to_add.push_back({
1894
0
                        .addr_connect = pnode->addr,
1895
0
                        .grant = std::move(pnode->grantOutbound),
1896
0
                        .destination = pnode->m_dest,
1897
0
                        .conn_type = pnode->m_conn_type,
1898
0
                        .use_v2transport = false});
1899
0
                    LogPrint(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
1900
0
                }
1901
1902
                // release outbound grant (if any)
1903
0
                pnode->grantOutbound.Release();
1904
1905
                // close socket and cleanup
1906
0
                pnode->CloseSocketDisconnect();
1907
1908
                // update connection count by network
1909
0
                if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
  Branch (1909:21): [True: 0, False: 0]
1910
1911
                // hold in disconnected pool until all refs are released
1912
0
                pnode->Release();
1913
0
                m_nodes_disconnected.push_back(pnode);
1914
0
            }
1915
0
        }
1916
0
    }
1917
0
    {
1918
        // Delete disconnected nodes
1919
0
        std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1920
0
        for (CNode* pnode : nodes_disconnected_copy)
  Branch (1920:27): [True: 0, False: 0]
1921
0
        {
1922
            // Destroy the object only after other threads have stopped using it.
1923
0
            if (pnode->GetRefCount() <= 0) {
  Branch (1923:17): [True: 0, False: 0]
1924
0
                m_nodes_disconnected.remove(pnode);
1925
0
                DeleteNode(pnode);
1926
0
            }
1927
0
        }
1928
0
    }
1929
0
    {
1930
        // Move entries from reconnections_to_add to m_reconnections.
1931
0
        LOCK(m_reconnections_mutex);
1932
0
        m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1933
0
    }
1934
0
}
1935
1936
void CConnman::NotifyNumConnectionsChanged()
1937
0
{
1938
0
    size_t nodes_size;
1939
0
    {
1940
0
        LOCK(m_nodes_mutex);
1941
0
        nodes_size = m_nodes.size();
1942
0
    }
1943
0
    if(nodes_size != nPrevNodeCount) {
  Branch (1943:8): [True: 0, False: 0]
1944
0
        nPrevNodeCount = nodes_size;
1945
0
        if (m_client_interface) {
  Branch (1945:13): [True: 0, False: 0]
1946
0
            m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1947
0
        }
1948
0
    }
1949
0
}
1950
1951
bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
1952
12.6k
{
1953
12.6k
    return node.m_connected + m_peer_connect_timeout < now;
1954
12.6k
}
1955
1956
bool CConnman::InactivityCheck(const CNode& node) const
1957
0
{
1958
    // Tests that see disconnects after using mocktime can start nodes with a
1959
    // large timeout. For example, -peertimeout=999999999.
1960
0
    const auto now{GetTime<std::chrono::seconds>()};
1961
0
    const auto last_send{node.m_last_send.load()};
1962
0
    const auto last_recv{node.m_last_recv.load()};
1963
1964
0
    if (!ShouldRunInactivityChecks(node, now)) return false;
  Branch (1964:9): [True: 0, False: 0]
1965
1966
0
    if (last_recv.count() == 0 || last_send.count() == 0) {
  Branch (1966:9): [True: 0, False: 0]
  Branch (1966:35): [True: 0, False: 0]
1967
0
        LogPrint(BCLog::NET, "socket no message in first %i seconds, %d %d peer=%d\n", count_seconds(m_peer_connect_timeout), last_recv.count() != 0, last_send.count() != 0, node.GetId());
1968
0
        return true;
1969
0
    }
1970
1971
0
    if (now > last_send + TIMEOUT_INTERVAL) {
  Branch (1971:9): [True: 0, False: 0]
1972
0
        LogPrint(BCLog::NET, "socket sending timeout: %is peer=%d\n", count_seconds(now - last_send), node.GetId());
1973
0
        return true;
1974
0
    }
1975
1976
0
    if (now > last_recv + TIMEOUT_INTERVAL) {
  Branch (1976:9): [True: 0, False: 0]
1977
0
        LogPrint(BCLog::NET, "socket receive timeout: %is peer=%d\n", count_seconds(now - last_recv), node.GetId());
1978
0
        return true;
1979
0
    }
1980
1981
0
    if (!node.fSuccessfullyConnected) {
  Branch (1981:9): [True: 0, False: 0]
1982
0
        if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
  Branch (1982:13): [True: 0, False: 0]
1983
0
            LogPrint(BCLog::NET, "V2 handshake timeout peer=%d\n", node.GetId());
1984
0
        } else {
1985
0
            LogPrint(BCLog::NET, "version handshake timeout peer=%d\n", node.GetId());
1986
0
        }
1987
0
        return true;
1988
0
    }
1989
1990
0
    return false;
1991
0
}
1992
1993
Sock::EventsPerSock CConnman::GenerateWaitSockets(Span<CNode* const> nodes)
1994
0
{
1995
0
    Sock::EventsPerSock events_per_sock;
1996
1997
0
    for (const ListenSocket& hListenSocket : vhListenSocket) {
  Branch (1997:44): [True: 0, False: 0]
1998
0
        events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
1999
0
    }
2000
2001
0
    for (CNode* pnode : nodes) {
  Branch (2001:23): [True: 0, False: 0]
2002
0
        bool select_recv = !pnode->fPauseRecv;
2003
0
        bool select_send;
2004
0
        {
2005
0
            LOCK(pnode->cs_vSend);
2006
            // Sending is possible if either there are bytes to send right now, or if there will be
2007
            // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2008
            // determines both of these in a single call.
2009
0
            const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2010
0
            select_send = !to_send.empty() || more;
  Branch (2010:27): [True: 0, False: 0]
  Branch (2010:47): [True: 0, False: 0]
2011
0
        }
2012
0
        if (!select_recv && !select_send) continue;
  Branch (2012:13): [True: 0, False: 0]
  Branch (2012:29): [True: 0, False: 0]
2013
2014
0
        LOCK(pnode->m_sock_mutex);
2015
0
        if (pnode->m_sock) {
  Branch (2015:13): [True: 0, False: 0]
2016
0
            Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
  Branch (2016:34): [True: 0, False: 0]
  Branch (2016:67): [True: 0, False: 0]
2017
0
            events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2018
0
        }
2019
0
    }
2020
2021
0
    return events_per_sock;
2022
0
}
2023
2024
void CConnman::SocketHandler()
2025
0
{
2026
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
2027
2028
0
    Sock::EventsPerSock events_per_sock;
2029
2030
0
    {
2031
0
        const NodesSnapshot snap{*this, /*shuffle=*/false};
2032
2033
0
        const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2034
2035
        // Check for the readiness of the already connected sockets and the
2036
        // listening sockets in one call ("readiness" as in poll(2) or
2037
        // select(2)). If none are ready, wait for a short while and return
2038
        // empty sets.
2039
0
        events_per_sock = GenerateWaitSockets(snap.Nodes());
2040
0
        if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
  Branch (2040:13): [True: 0, False: 0]
  Branch (2040:13): [True: 0, False: 0]
  Branch (2040:40): [True: 0, False: 0]
2041
0
            interruptNet.sleep_for(timeout);
2042
0
        }
2043
2044
        // Service (send/receive) each of the already connected nodes.
2045
0
        SocketHandlerConnected(snap.Nodes(), events_per_sock);
2046
0
    }
2047
2048
    // Accept new connections from listening sockets.
2049
0
    SocketHandlerListening(events_per_sock);
2050
0
}
2051
2052
void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2053
                                      const Sock::EventsPerSock& events_per_sock)
2054
0
{
2055
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
2056
2057
0
    for (CNode* pnode : nodes) {
  Branch (2057:23): [True: 0, False: 0]
2058
0
        if (interruptNet)
  Branch (2058:13): [True: 0, False: 0]
2059
0
            return;
2060
2061
        //
2062
        // Receive
2063
        //
2064
0
        bool recvSet = false;
2065
0
        bool sendSet = false;
2066
0
        bool errorSet = false;
2067
0
        {
2068
0
            LOCK(pnode->m_sock_mutex);
2069
0
            if (!pnode->m_sock) {
  Branch (2069:17): [True: 0, False: 0]
2070
0
                continue;
2071
0
            }
2072
0
            const auto it = events_per_sock.find(pnode->m_sock);
2073
0
            if (it != events_per_sock.end()) {
  Branch (2073:17): [True: 0, False: 0]
2074
0
                recvSet = it->second.occurred & Sock::RECV;
2075
0
                sendSet = it->second.occurred & Sock::SEND;
2076
0
                errorSet = it->second.occurred & Sock::ERR;
2077
0
            }
2078
0
        }
2079
2080
0
        if (sendSet) {
  Branch (2080:13): [True: 0, False: 0]
2081
            // Send data
2082
0
            auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2083
0
            if (bytes_sent) {
  Branch (2083:17): [True: 0, False: 0]
2084
0
                RecordBytesSent(bytes_sent);
2085
2086
                // If both receiving and (non-optimistic) sending were possible, we first attempt
2087
                // sending. If that succeeds, but does not fully drain the send queue, do not
2088
                // attempt to receive. This avoids needlessly queueing data if the remote peer
2089
                // is slow at receiving data, by means of TCP flow control. We only do this when
2090
                // sending actually succeeded to make sure progress is always made; otherwise a
2091
                // deadlock would be possible when both sides have data to send, but neither is
2092
                // receiving.
2093
0
                if (data_left) recvSet = false;
  Branch (2093:21): [True: 0, False: 0]
2094
0
            }
2095
0
        }
2096
2097
0
        if (recvSet || errorSet)
  Branch (2097:13): [True: 0, False: 0]
  Branch (2097:24): [True: 0, False: 0]
2098
0
        {
2099
            // typical socket buffer is 8K-64K
2100
0
            uint8_t pchBuf[0x10000];
2101
0
            int nBytes = 0;
2102
0
            {
2103
0
                LOCK(pnode->m_sock_mutex);
2104
0
                if (!pnode->m_sock) {
  Branch (2104:21): [True: 0, False: 0]
2105
0
                    continue;
2106
0
                }
2107
0
                nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2108
0
            }
2109
0
            if (nBytes > 0)
  Branch (2109:17): [True: 0, False: 0]
2110
0
            {
2111
0
                bool notify = false;
2112
0
                if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
  Branch (2112:21): [True: 0, False: 0]
2113
0
                    pnode->CloseSocketDisconnect();
2114
0
                }
2115
0
                RecordBytesRecv(nBytes);
2116
0
                if (notify) {
  Branch (2116:21): [True: 0, False: 0]
2117
0
                    pnode->MarkReceivedMsgsForProcessing();
2118
0
                    WakeMessageHandler();
2119
0
                }
2120
0
            }
2121
0
            else if (nBytes == 0)
  Branch (2121:22): [True: 0, False: 0]
2122
0
            {
2123
                // socket closed gracefully
2124
0
                if (!pnode->fDisconnect) {
  Branch (2124:21): [True: 0, False: 0]
2125
0
                    LogPrint(BCLog::NET, "socket closed for peer=%d\n", pnode->GetId());
2126
0
                }
2127
0
                pnode->CloseSocketDisconnect();
2128
0
            }
2129
0
            else if (nBytes < 0)
  Branch (2129:22): [True: 0, False: 0]
2130
0
            {
2131
                // error
2132
0
                int nErr = WSAGetLastError();
2133
0
                if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
  Branch (2133:21): [True: 0, False: 0]
  Branch (2133:47): [True: 0, False: 0]
  Branch (2133:70): [True: 0, False: 0]
  Branch (2133:90): [True: 0, False: 0]
2134
0
                {
2135
0
                    if (!pnode->fDisconnect) {
  Branch (2135:25): [True: 0, False: 0]
2136
0
                        LogPrint(BCLog::NET, "socket recv error for peer=%d: %s\n", pnode->GetId(), NetworkErrorString(nErr));
2137
0
                    }
2138
0
                    pnode->CloseSocketDisconnect();
2139
0
                }
2140
0
            }
2141
0
        }
2142
2143
0
        if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
  Branch (2143:13): [True: 0, False: 0]
2144
0
    }
2145
0
}
2146
2147
void CConnman::SocketHandlerListening(const Sock::EventsPerSock& events_per_sock)
2148
0
{
2149
0
    for (const ListenSocket& listen_socket : vhListenSocket) {
  Branch (2149:44): [True: 0, False: 0]
2150
0
        if (interruptNet) {
  Branch (2150:13): [True: 0, False: 0]
2151
0
            return;
2152
0
        }
2153
0
        const auto it = events_per_sock.find(listen_socket.sock);
2154
0
        if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
  Branch (2154:13): [True: 0, False: 0]
  Branch (2154:13): [True: 0, False: 0]
  Branch (2154:44): [True: 0, False: 0]
2155
0
            AcceptConnection(listen_socket);
2156
0
        }
2157
0
    }
2158
0
}
2159
2160
void CConnman::ThreadSocketHandler()
2161
0
{
2162
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
2163
2164
0
    while (!interruptNet)
  Branch (2164:12): [True: 0, False: 0]
2165
0
    {
2166
0
        DisconnectNodes();
2167
0
        NotifyNumConnectionsChanged();
2168
0
        SocketHandler();
2169
0
    }
2170
0
}
2171
2172
void CConnman::WakeMessageHandler()
2173
0
{
2174
0
    {
2175
0
        LOCK(mutexMsgProc);
2176
0
        fMsgProcWake = true;
2177
0
    }
2178
0
    condMsgProc.notify_one();
2179
0
}
2180
2181
void CConnman::ThreadDNSAddressSeed()
2182
0
{
2183
0
    constexpr int TARGET_OUTBOUND_CONNECTIONS = 2;
2184
0
    int outbound_connection_count = 0;
2185
2186
0
    if (gArgs.IsArgSet("-seednode")) {
  Branch (2186:9): [True: 0, False: 0]
2187
0
        auto start = NodeClock::now();
2188
0
        constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2189
0
        LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2190
0
        while (!interruptNet) {
  Branch (2190:16): [True: 0, False: 0]
2191
0
            if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
  Branch (2191:17): [True: 0, False: 0]
2192
0
                return;
2193
2194
            // Abort if we have spent enough time without reaching our target.
2195
            // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2196
0
            if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
  Branch (2196:17): [True: 0, False: 0]
2197
0
                LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2198
0
                break;
2199
0
            }
2200
2201
0
            outbound_connection_count = GetFullOutboundConnCount();
2202
0
            if (outbound_connection_count >= TARGET_OUTBOUND_CONNECTIONS) {
  Branch (2202:17): [True: 0, False: 0]
2203
0
                LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2204
0
                break;
2205
0
            }
2206
0
        }
2207
0
    }
2208
2209
0
    FastRandomContext rng;
2210
0
    std::vector<std::string> seeds = m_params.DNSSeeds();
2211
0
    std::shuffle(seeds.begin(), seeds.end(), rng);
2212
0
    int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2213
2214
0
    if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
  Branch (2214:9): [True: 0, False: 0]
2215
        // When -forcednsseed is provided, query all.
2216
0
        seeds_right_now = seeds.size();
2217
0
    } else if (addrman.Size() == 0) {
  Branch (2217:16): [True: 0, False: 0]
2218
        // If we have no known peers, query all.
2219
        // This will occur on the first run, or if peers.dat has been
2220
        // deleted.
2221
0
        seeds_right_now = seeds.size();
2222
0
    }
2223
2224
    // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2225
0
    if (outbound_connection_count < TARGET_OUTBOUND_CONNECTIONS || seeds_right_now) {
  Branch (2225:9): [True: 0, False: 0]
  Branch (2225:68): [True: 0, False: 0]
2226
        // goal: only query DNS seed if address need is acute
2227
        // * If we have a reasonable number of peers in addrman, spend
2228
        //   some time trying them first. This improves user privacy by
2229
        //   creating fewer identifying DNS requests, reduces trust by
2230
        //   giving seeds less influence on the network topology, and
2231
        //   reduces traffic to the seeds.
2232
        // * When querying DNS seeds query a few at once, this ensures
2233
        //   that we don't give DNS seeds the ability to eclipse nodes
2234
        //   that query them.
2235
        // * If we continue having problems, eventually query all the
2236
        //   DNS seeds, and if that fails too, also try the fixed seeds.
2237
        //   (done in ThreadOpenConnections)
2238
0
        int found = 0;
2239
0
        const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
  Branch (2239:55): [True: 0, False: 0]
2240
2241
0
        for (const std::string& seed : seeds) {
  Branch (2241:38): [True: 0, False: 0]
2242
0
            if (seeds_right_now == 0) {
  Branch (2242:17): [True: 0, False: 0]
2243
0
                seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2244
2245
0
                if (addrman.Size() > 0) {
  Branch (2245:21): [True: 0, False: 0]
2246
0
                    LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2247
0
                    std::chrono::seconds to_wait = seeds_wait_time;
2248
0
                    while (to_wait.count() > 0) {
  Branch (2248:28): [True: 0, False: 0]
2249
                        // if sleeping for the MANY_PEERS interval, wake up
2250
                        // early to see if we have enough peers and can stop
2251
                        // this thread entirely freeing up its resources
2252
0
                        std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2253
0
                        if (!interruptNet.sleep_for(w)) return;
  Branch (2253:29): [True: 0, False: 0]
2254
0
                        to_wait -= w;
2255
2256
0
                        if (GetFullOutboundConnCount() >= TARGET_OUTBOUND_CONNECTIONS) {
  Branch (2256:29): [True: 0, False: 0]
2257
0
                            if (found > 0) {
  Branch (2257:33): [True: 0, False: 0]
2258
0
                                LogPrintf("%d addresses found from DNS seeds\n", found);
2259
0
                                LogPrintf("P2P peers available. Finished DNS seeding.\n");
2260
0
                            } else {
2261
0
                                LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2262
0
                            }
2263
0
                            return;
2264
0
                        }
2265
0
                    }
2266
0
                }
2267
0
            }
2268
2269
0
            if (interruptNet) return;
  Branch (2269:17): [True: 0, False: 0]
2270
2271
            // hold off on querying seeds if P2P network deactivated
2272
0
            if (!fNetworkActive) {
  Branch (2272:17): [True: 0, False: 0]
2273
0
                LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2274
0
                do {
2275
0
                    if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
  Branch (2275:25): [True: 0, False: 0]
2276
0
                } while (!fNetworkActive);
  Branch (2276:26): [True: 0, False: 0]
2277
0
            }
2278
2279
0
            LogPrintf("Loading addresses from DNS seed %s\n", seed);
2280
            // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2281
            // for the base dns seed domain in chainparams
2282
0
            if (HaveNameProxy()) {
  Branch (2282:17): [True: 0, False: 0]
2283
0
                AddAddrFetch(seed);
2284
0
            } else {
2285
0
                std::vector<CAddress> vAdd;
2286
0
                constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2287
0
                std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2288
0
                CNetAddr resolveSource;
2289
0
                if (!resolveSource.SetInternal(host)) {
  Branch (2289:21): [True: 0, False: 0]
2290
0
                    continue;
2291
0
                }
2292
                // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2293
                // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2294
                // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2295
                // returned.
2296
0
                unsigned int nMaxIPs = 32;
2297
0
                const auto addresses{LookupHost(host, nMaxIPs, true)};
2298
0
                if (!addresses.empty()) {
  Branch (2298:21): [True: 0, False: 0]
2299
0
                    for (const CNetAddr& ip : addresses) {
  Branch (2299:45): [True: 0, False: 0]
2300
0
                        CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2301
0
                        addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2302
0
                        vAdd.push_back(addr);
2303
0
                        found++;
2304
0
                    }
2305
0
                    addrman.Add(vAdd, resolveSource);
2306
0
                } else {
2307
                    // If the seed does not support a subdomain with our desired service bits,
2308
                    // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2309
                    // base dns seed domain in chainparams
2310
0
                    AddAddrFetch(seed);
2311
0
                }
2312
0
            }
2313
0
            --seeds_right_now;
2314
0
        }
2315
0
        LogPrintf("%d addresses found from DNS seeds\n", found);
2316
0
    } else {
2317
0
        LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2318
0
    }
2319
0
}
2320
2321
void CConnman::DumpAddresses()
2322
0
{
2323
0
    const auto start{SteadyClock::now()};
2324
2325
0
    DumpPeerAddresses(::gArgs, addrman);
2326
2327
0
    LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat  %dms\n",
2328
0
             addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2329
0
}
2330
2331
void CConnman::ProcessAddrFetch()
2332
0
{
2333
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2334
0
    std::string strDest;
2335
0
    {
2336
0
        LOCK(m_addr_fetches_mutex);
2337
0
        if (m_addr_fetches.empty())
  Branch (2337:13): [True: 0, False: 0]
2338
0
            return;
2339
0
        strDest = m_addr_fetches.front();
2340
0
        m_addr_fetches.pop_front();
2341
0
    }
2342
    // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2343
    // peer doesn't support it or immediately disconnects us for another reason.
2344
0
    const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2345
0
    CAddress addr;
2346
0
    CSemaphoreGrant grant(*semOutbound, /*fTry=*/true);
2347
0
    if (grant) {
  Branch (2347:9): [True: 0, False: 0]
2348
0
        OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2349
0
    }
2350
0
}
2351
2352
bool CConnman::GetTryNewOutboundPeer() const
2353
0
{
2354
0
    return m_try_another_outbound_peer;
2355
0
}
2356
2357
void CConnman::SetTryNewOutboundPeer(bool flag)
2358
0
{
2359
0
    m_try_another_outbound_peer = flag;
2360
0
    LogPrint(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2361
0
}
2362
2363
void CConnman::StartExtraBlockRelayPeers()
2364
0
{
2365
0
    LogPrint(BCLog::NET, "enabling extra block-relay-only peers\n");
2366
0
    m_start_extra_block_relay_peers = true;
2367
0
}
2368
2369
// Return the number of outbound connections that are full relay (not blocks only)
2370
int CConnman::GetFullOutboundConnCount() const
2371
0
{
2372
0
    int nRelevant = 0;
2373
0
    {
2374
0
        LOCK(m_nodes_mutex);
2375
0
        for (const CNode* pnode : m_nodes) {
  Branch (2375:33): [True: 0, False: 0]
2376
0
            if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
  Branch (2376:17): [True: 0, False: 0]
  Branch (2376:50): [True: 0, False: 0]
2377
0
        }
2378
0
    }
2379
0
    return nRelevant;
2380
0
}
2381
2382
// Return the number of peers we have over our outbound connection limit
2383
// Exclude peers that are marked for disconnect, or are going to be
2384
// disconnected soon (eg ADDR_FETCH and FEELER)
2385
// Also exclude peers that haven't finished initial connection handshake yet
2386
// (so that we don't decide we're over our desired connection limit, and then
2387
// evict some peer that has finished the handshake)
2388
int CConnman::GetExtraFullOutboundCount() const
2389
0
{
2390
0
    int full_outbound_peers = 0;
2391
0
    {
2392
0
        LOCK(m_nodes_mutex);
2393
0
        for (const CNode* pnode : m_nodes) {
  Branch (2393:33): [True: 0, False: 0]
2394
0
            if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
  Branch (2394:17): [True: 0, False: 0]
  Branch (2394:50): [True: 0, False: 0]
  Branch (2394:73): [True: 0, False: 0]
2395
0
                ++full_outbound_peers;
2396
0
            }
2397
0
        }
2398
0
    }
2399
0
    return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2400
0
}
2401
2402
int CConnman::GetExtraBlockRelayCount() const
2403
0
{
2404
0
    int block_relay_peers = 0;
2405
0
    {
2406
0
        LOCK(m_nodes_mutex);
2407
0
        for (const CNode* pnode : m_nodes) {
  Branch (2407:33): [True: 0, False: 0]
2408
0
            if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
  Branch (2408:17): [True: 0, False: 0]
  Branch (2408:50): [True: 0, False: 0]
  Branch (2408:73): [True: 0, False: 0]
2409
0
                ++block_relay_peers;
2410
0
            }
2411
0
        }
2412
0
    }
2413
0
    return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2414
0
}
2415
2416
std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2417
0
{
2418
0
    std::unordered_set<Network> networks{};
2419
0
    for (int n = 0; n < NET_MAX; n++) {
  Branch (2419:21): [True: 0, False: 0]
2420
0
        enum Network net = (enum Network)n;
2421
0
        if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
  Branch (2421:13): [True: 0, False: 0]
  Branch (2421:38): [True: 0, False: 0]
2422
0
        if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
  Branch (2422:13): [True: 0, False: 0]
  Branch (2422:47): [True: 0, False: 0]
2423
0
            networks.insert(net);
2424
0
        }
2425
0
    }
2426
0
    return networks;
2427
0
}
2428
2429
bool CConnman::MultipleManualOrFullOutboundConns(Network net) const
2430
0
{
2431
0
    AssertLockHeld(m_nodes_mutex);
2432
0
    return m_network_conn_counts[net] > 1;
2433
0
}
2434
2435
bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2436
0
{
2437
0
    std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2438
0
    std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2439
2440
0
    LOCK(m_nodes_mutex);
2441
0
    for (const auto net : nets) {
  Branch (2441:25): [True: 0, False: 0]
2442
0
        if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
  Branch (2442:13): [True: 0, False: 0]
  Branch (2442:47): [True: 0, False: 0]
  Branch (2442:82): [True: 0, False: 0]
2443
0
            network = net;
2444
0
            return true;
2445
0
        }
2446
0
    }
2447
2448
0
    return false;
2449
0
}
2450
2451
void CConnman::ThreadOpenConnections(const std::vector<std::string> connect)
2452
0
{
2453
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2454
0
    AssertLockNotHeld(m_reconnections_mutex);
2455
0
    FastRandomContext rng;
2456
    // Connect to specific addresses
2457
0
    if (!connect.empty())
  Branch (2457:9): [True: 0, False: 0]
2458
0
    {
2459
        // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2460
        // peer doesn't support it or immediately disconnects us for another reason.
2461
0
        const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2462
0
        for (int64_t nLoop = 0;; nLoop++)
2463
0
        {
2464
0
            for (const std::string& strAddr : connect)
  Branch (2464:45): [True: 0, False: 0]
2465
0
            {
2466
0
                CAddress addr(CService(), NODE_NONE);
2467
0
                OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2468
0
                for (int i = 0; i < 10 && i < nLoop; i++)
  Branch (2468:33): [True: 0, False: 0]
  Branch (2468:43): [True: 0, False: 0]
2469
0
                {
2470
0
                    if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
  Branch (2470:25): [True: 0, False: 0]
2471
0
                        return;
2472
0
                }
2473
0
            }
2474
0
            if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
  Branch (2474:17): [True: 0, False: 0]
2475
0
                return;
2476
0
            PerformReconnections();
2477
0
        }
2478
0
    }
2479
2480
    // Initiate network connections
2481
0
    auto start = GetTime<std::chrono::microseconds>();
2482
2483
    // Minimum time before next feeler connection (in microseconds).
2484
0
    auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2485
0
    auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2486
0
    auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2487
0
    const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2488
0
    bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2489
0
    const bool use_seednodes{gArgs.IsArgSet("-seednode")};
2490
2491
0
    if (!add_fixed_seeds) {
  Branch (2491:9): [True: 0, False: 0]
2492
0
        LogPrintf("Fixed seeds are disabled\n");
2493
0
    }
2494
2495
0
    while (!interruptNet)
  Branch (2495:12): [True: 0, False: 0]
2496
0
    {
2497
0
        ProcessAddrFetch();
2498
2499
0
        if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
  Branch (2499:13): [True: 0, False: 0]
2500
0
            return;
2501
2502
0
        PerformReconnections();
2503
2504
0
        CSemaphoreGrant grant(*semOutbound);
2505
0
        if (interruptNet)
  Branch (2505:13): [True: 0, False: 0]
2506
0
            return;
2507
2508
0
        const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2509
0
        if (add_fixed_seeds && !fixed_seed_networks.empty()) {
  Branch (2509:13): [True: 0, False: 0]
  Branch (2509:32): [True: 0, False: 0]
2510
            // When the node starts with an empty peers.dat, there are a few other sources of peers before
2511
            // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2512
            // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2513
            // 60 seconds for any of those sources to populate addrman.
2514
0
            bool add_fixed_seeds_now = false;
2515
            // It is cheapest to check if enough time has passed first.
2516
0
            if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
  Branch (2516:17): [True: 0, False: 0]
2517
0
                add_fixed_seeds_now = true;
2518
0
                LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2519
0
            }
2520
2521
            // Perform cheap checks before locking a mutex.
2522
0
            else if (!dnsseed && !use_seednodes) {
  Branch (2522:22): [True: 0, False: 0]
  Branch (2522:34): [True: 0, False: 0]
2523
0
                LOCK(m_added_nodes_mutex);
2524
0
                if (m_added_node_params.empty()) {
  Branch (2524:21): [True: 0, False: 0]
2525
0
                    add_fixed_seeds_now = true;
2526
0
                    LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2527
0
                }
2528
0
            }
2529
2530
0
            if (add_fixed_seeds_now) {
  Branch (2530:17): [True: 0, False: 0]
2531
0
                std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2532
                // We will not make outgoing connections to peers that are unreachable
2533
                // (e.g. because of -onlynet configuration).
2534
                // Therefore, we do not add them to addrman in the first place.
2535
                // In case previously unreachable networks become reachable
2536
                // (e.g. in case of -onlynet changes by the user), fixed seeds will
2537
                // be loaded only for networks for which we have no addresses.
2538
0
                seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2539
0
                                                [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2540
0
                                 seed_addrs.end());
2541
0
                CNetAddr local;
2542
0
                local.SetInternal("fixedseeds");
2543
0
                addrman.Add(seed_addrs, local);
2544
0
                add_fixed_seeds = false;
2545
0
                LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2546
0
            }
2547
0
        }
2548
2549
        //
2550
        // Choose an address to connect to based on most recently seen
2551
        //
2552
0
        CAddress addrConnect;
2553
2554
        // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2555
0
        int nOutboundFullRelay = 0;
2556
0
        int nOutboundBlockRelay = 0;
2557
0
        int outbound_privacy_network_peers = 0;
2558
0
        std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2559
2560
0
        {
2561
0
            LOCK(m_nodes_mutex);
2562
0
            for (const CNode* pnode : m_nodes) {
  Branch (2562:37): [True: 0, False: 0]
2563
0
                if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
  Branch (2563:21): [True: 0, False: 0]
2564
0
                if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
  Branch (2564:21): [True: 0, False: 0]
2565
2566
                // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2567
0
                switch (pnode->m_conn_type) {
  Branch (2567:25): [True: 0, False: 0]
2568
                    // We currently don't take inbound connections into account. Since they are
2569
                    // free to make, an attacker could make them to prevent us from connecting to
2570
                    // certain peers.
2571
0
                    case ConnectionType::INBOUND:
  Branch (2571:21): [True: 0, False: 0]
2572
                    // Short-lived outbound connections should not affect how we select outbound
2573
                    // peers from addrman.
2574
0
                    case ConnectionType::ADDR_FETCH:
  Branch (2574:21): [True: 0, False: 0]
2575
0
                    case ConnectionType::FEELER:
  Branch (2575:21): [True: 0, False: 0]
2576
0
                        break;
2577
0
                    case ConnectionType::MANUAL:
  Branch (2577:21): [True: 0, False: 0]
2578
0
                    case ConnectionType::OUTBOUND_FULL_RELAY:
  Branch (2578:21): [True: 0, False: 0]
2579
0
                    case ConnectionType::BLOCK_RELAY:
  Branch (2579:21): [True: 0, False: 0]
2580
0
                        const CAddress address{pnode->addr};
2581
0
                        if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
  Branch (2581:29): [True: 0, False: 0]
  Branch (2581:48): [True: 0, False: 0]
  Branch (2581:67): [True: 0, False: 0]
2582
                            // Since our addrman-groups for these networks are
2583
                            // random, without relation to the route we
2584
                            // take to connect to these peers or to the
2585
                            // difficulty in obtaining addresses with diverse
2586
                            // groups, we don't worry about diversity with
2587
                            // respect to our addrman groups when connecting to
2588
                            // these networks.
2589
0
                            ++outbound_privacy_network_peers;
2590
0
                        } else {
2591
0
                            outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2592
0
                        }
2593
0
                } // no default case, so the compiler can warn about missing cases
2594
0
            }
2595
0
        }
2596
2597
0
        ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
2598
0
        auto now = GetTime<std::chrono::microseconds>();
2599
0
        bool anchor = false;
2600
0
        bool fFeeler = false;
2601
0
        std::optional<Network> preferred_net;
2602
2603
        // Determine what type of connection to open. Opening
2604
        // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2605
        // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2606
        // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2607
        // until we hit our block-relay-only peer limit.
2608
        // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2609
        // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2610
        // these conditions are met, check to see if it's time to try an extra
2611
        // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2612
        // timer to decide if we should open a FEELER.
2613
2614
0
        if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
  Branch (2614:13): [True: 0, False: 0]
  Branch (2614:35): [True: 0, False: 0]
2615
0
            conn_type = ConnectionType::BLOCK_RELAY;
2616
0
            anchor = true;
2617
0
        } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
  Branch (2617:20): [True: 0, False: 0]
2618
            // OUTBOUND_FULL_RELAY
2619
0
        } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
  Branch (2619:20): [True: 0, False: 0]
2620
0
            conn_type = ConnectionType::BLOCK_RELAY;
2621
0
        } else if (GetTryNewOutboundPeer()) {
  Branch (2621:20): [True: 0, False: 0]
2622
            // OUTBOUND_FULL_RELAY
2623
0
        } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
  Branch (2623:20): [True: 0, False: 0]
  Branch (2623:52): [True: 0, False: 0]
2624
            // Periodically connect to a peer (using regular outbound selection
2625
            // methodology from addrman) and stay connected long enough to sync
2626
            // headers, but not much else.
2627
            //
2628
            // Then disconnect the peer, if we haven't learned anything new.
2629
            //
2630
            // The idea is to make eclipse attacks very difficult to pull off,
2631
            // because every few minutes we're finding a new peer to learn headers
2632
            // from.
2633
            //
2634
            // This is similar to the logic for trying extra outbound (full-relay)
2635
            // peers, except:
2636
            // - we do this all the time on an exponential timer, rather than just when
2637
            //   our tip is stale
2638
            // - we potentially disconnect our next-youngest block-relay-only peer, if our
2639
            //   newest block-relay-only peer delivers a block more recently.
2640
            //   See the eviction logic in net_processing.cpp.
2641
            //
2642
            // Because we can promote these connections to block-relay-only
2643
            // connections, they do not get their own ConnectionType enum
2644
            // (similar to how we deal with extra outbound peers).
2645
0
            next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2646
0
            conn_type = ConnectionType::BLOCK_RELAY;
2647
0
        } else if (now > next_feeler) {
  Branch (2647:20): [True: 0, False: 0]
2648
0
            next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2649
0
            conn_type = ConnectionType::FEELER;
2650
0
            fFeeler = true;
2651
0
        } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
  Branch (2651:20): [True: 0, False: 0]
2652
0
                   m_max_outbound_full_relay == MAX_OUTBOUND_FULL_RELAY_CONNECTIONS &&
  Branch (2652:20): [True: 0, False: 0]
2653
0
                   now > next_extra_network_peer &&
  Branch (2653:20): [True: 0, False: 0]
2654
0
                   MaybePickPreferredNetwork(preferred_net)) {
  Branch (2654:20): [True: 0, False: 0]
2655
            // Full outbound connection management: Attempt to get at least one
2656
            // outbound peer from each reachable network by making extra connections
2657
            // and then protecting "only" peers from a network during outbound eviction.
2658
            // This is not attempted if the user changed -maxconnections to a value
2659
            // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2660
            // to prevent interactions with otherwise protected outbound peers.
2661
0
            next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2662
0
        } else {
2663
            // skip to next iteration of while loop
2664
0
            continue;
2665
0
        }
2666
2667
0
        addrman.ResolveCollisions();
2668
2669
0
        const auto current_time{NodeClock::now()};
2670
0
        int nTries = 0;
2671
0
        while (!interruptNet)
  Branch (2671:16): [True: 0, False: 0]
2672
0
        {
2673
0
            if (anchor && !m_anchors.empty()) {
  Branch (2673:17): [True: 0, False: 0]
  Branch (2673:27): [True: 0, False: 0]
2674
0
                const CAddress addr = m_anchors.back();
2675
0
                m_anchors.pop_back();
2676
0
                if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
  Branch (2676:21): [True: 0, False: 0]
  Branch (2676:21): [True: 0, False: 0]
  Branch (2676:40): [True: 0, False: 0]
  Branch (2676:57): [True: 0, False: 0]
2677
0
                    !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
  Branch (2677:21): [True: 0, False: 0]
2678
0
                    outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
  Branch (2678:21): [True: 0, False: 0]
2679
0
                addrConnect = addr;
2680
0
                LogPrint(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
2681
0
                break;
2682
0
            }
2683
2684
            // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2685
            // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2686
            // already-connected network ranges, ...) before trying new addrman addresses.
2687
0
            nTries++;
2688
0
            if (nTries > 100)
  Branch (2688:17): [True: 0, False: 0]
2689
0
                break;
2690
2691
0
            CAddress addr;
2692
0
            NodeSeconds addr_last_try{0s};
2693
2694
0
            if (fFeeler) {
  Branch (2694:17): [True: 0, False: 0]
2695
                // First, try to get a tried table collision address. This returns
2696
                // an empty (invalid) address if there are no collisions to try.
2697
0
                std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2698
2699
0
                if (!addr.IsValid()) {
  Branch (2699:21): [True: 0, False: 0]
2700
                    // No tried table collisions. Select a new table address
2701
                    // for our feeler.
2702
0
                    std::tie(addr, addr_last_try) = addrman.Select(true);
2703
0
                } else if (AlreadyConnectedToAddress(addr)) {
  Branch (2703:28): [True: 0, False: 0]
2704
                    // If test-before-evict logic would have us connect to a
2705
                    // peer that we're already connected to, just mark that
2706
                    // address as Good(). We won't be able to initiate the
2707
                    // connection anyway, so this avoids inadvertently evicting
2708
                    // a currently-connected peer.
2709
0
                    addrman.Good(addr);
2710
                    // Select a new table address for our feeler instead.
2711
0
                    std::tie(addr, addr_last_try) = addrman.Select(true);
2712
0
                }
2713
0
            } else {
2714
                // Not a feeler
2715
                // If preferred_net has a value set, pick an extra outbound
2716
                // peer from that network. The eviction logic in net_processing
2717
                // ensures that a peer from another network will be evicted.
2718
0
                std::tie(addr, addr_last_try) = addrman.Select(false, preferred_net);
2719
0
            }
2720
2721
            // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2722
0
            if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
  Branch (2722:17): [True: 0, False: 0]
  Branch (2722:17): [True: 0, False: 0]
  Branch (2722:29): [True: 0, False: 0]
2723
0
                continue;
2724
0
            }
2725
2726
            // if we selected an invalid or local address, restart
2727
0
            if (!addr.IsValid() || IsLocal(addr)) {
  Branch (2727:17): [True: 0, False: 0]
  Branch (2727:36): [True: 0, False: 0]
2728
0
                break;
2729
0
            }
2730
2731
0
            if (!g_reachable_nets.Contains(addr)) {
  Branch (2731:17): [True: 0, False: 0]
2732
0
                continue;
2733
0
            }
2734
2735
            // only consider very recently tried nodes after 30 failed attempts
2736
0
            if (current_time - addr_last_try < 10min && nTries < 30) {
  Branch (2736:17): [True: 0, False: 0]
  Branch (2736:17): [True: 0, False: 0]
  Branch (2736:57): [True: 0, False: 0]
2737
0
                continue;
2738
0
            }
2739
2740
            // for non-feelers, require all the services we'll want,
2741
            // for feelers, only require they be a full node (only because most
2742
            // SPV clients don't have a good address DB available)
2743
0
            if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
  Branch (2743:17): [True: 0, False: 0]
  Branch (2743:29): [True: 0, False: 0]
2744
0
                continue;
2745
0
            } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
  Branch (2745:24): [True: 0, False: 0]
  Branch (2745:35): [True: 0, False: 0]
2746
0
                continue;
2747
0
            }
2748
2749
            // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2750
0
            if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
  Branch (2750:17): [True: 0, False: 0]
  Branch (2750:33): [True: 0, False: 0]
  Branch (2750:50): [True: 0, False: 0]
  Branch (2750:68): [True: 0, False: 0]
2751
0
                continue;
2752
0
            }
2753
2754
            // Do not make automatic outbound connections to addnode peers, to
2755
            // not use our limited outbound slots for them and to ensure
2756
            // addnode connections benefit from their intended protections.
2757
0
            if (AddedNodesContain(addr)) {
  Branch (2757:17): [True: 0, False: 0]
2758
0
                LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
2759
0
                              preferred_net.has_value() ? "network-specific " : "",
2760
0
                              ConnectionTypeAsString(conn_type), GetNetworkName(addr.GetNetwork()),
2761
0
                              fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2762
0
                continue;
2763
0
            }
2764
2765
0
            addrConnect = addr;
2766
0
            break;
2767
0
        }
2768
2769
0
        if (addrConnect.IsValid()) {
  Branch (2769:13): [True: 0, False: 0]
2770
0
            if (fFeeler) {
  Branch (2770:17): [True: 0, False: 0]
2771
                // Add small amount of random noise before connection to avoid synchronization.
2772
0
                if (!interruptNet.sleep_for(rng.rand_uniform_duration<CThreadInterrupt::Clock>(FEELER_SLEEP_WINDOW))) {
  Branch (2772:21): [True: 0, False: 0]
2773
0
                    return;
2774
0
                }
2775
0
                LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
2776
0
            }
2777
2778
0
            if (preferred_net != std::nullopt) LogPrint(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
  Branch (2778:17): [True: 0, False: 0]
2779
2780
            // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2781
            // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2782
            // Don't record addrman failure attempts when node is offline. This can be identified since all local
2783
            // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2784
0
            const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2785
            // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2786
0
            const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2787
0
            OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*strDest=*/nullptr, conn_type, use_v2transport);
2788
0
        }
2789
0
    }
2790
0
}
2791
2792
std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2793
0
{
2794
0
    std::vector<CAddress> ret;
2795
0
    LOCK(m_nodes_mutex);
2796
0
    for (const CNode* pnode : m_nodes) {
  Branch (2796:29): [True: 0, False: 0]
2797
0
        if (pnode->IsBlockOnlyConn()) {
  Branch (2797:13): [True: 0, False: 0]
2798
0
            ret.push_back(pnode->addr);
2799
0
        }
2800
0
    }
2801
2802
0
    return ret;
2803
0
}
2804
2805
std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2806
0
{
2807
0
    std::vector<AddedNodeInfo> ret;
2808
2809
0
    std::list<AddedNodeParams> lAddresses(0);
2810
0
    {
2811
0
        LOCK(m_added_nodes_mutex);
2812
0
        ret.reserve(m_added_node_params.size());
2813
0
        std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2814
0
    }
2815
2816
2817
    // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2818
0
    std::map<CService, bool> mapConnected;
2819
0
    std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2820
0
    {
2821
0
        LOCK(m_nodes_mutex);
2822
0
        for (const CNode* pnode : m_nodes) {
  Branch (2822:33): [True: 0, False: 0]
2823
0
            if (pnode->addr.IsValid()) {
  Branch (2823:17): [True: 0, False: 0]
2824
0
                mapConnected[pnode->addr] = pnode->IsInboundConn();
2825
0
            }
2826
0
            std::string addrName{pnode->m_addr_name};
2827
0
            if (!addrName.empty()) {
  Branch (2827:17): [True: 0, False: 0]
2828
0
                mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2829
0
            }
2830
0
        }
2831
0
    }
2832
2833
0
    for (const auto& addr : lAddresses) {
  Branch (2833:27): [True: 0, False: 0]
2834
0
        CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
2835
0
        AddedNodeInfo addedNode{addr, CService(), false, false};
2836
0
        if (service.IsValid()) {
  Branch (2836:13): [True: 0, False: 0]
2837
            // strAddNode is an IP:port
2838
0
            auto it = mapConnected.find(service);
2839
0
            if (it != mapConnected.end()) {
  Branch (2839:17): [True: 0, False: 0]
2840
0
                if (!include_connected) {
  Branch (2840:21): [True: 0, False: 0]
2841
0
                    continue;
2842
0
                }
2843
0
                addedNode.resolvedAddress = service;
2844
0
                addedNode.fConnected = true;
2845
0
                addedNode.fInbound = it->second;
2846
0
            }
2847
0
        } else {
2848
            // strAddNode is a name
2849
0
            auto it = mapConnectedByName.find(addr.m_added_node);
2850
0
            if (it != mapConnectedByName.end()) {
  Branch (2850:17): [True: 0, False: 0]
2851
0
                if (!include_connected) {
  Branch (2851:21): [True: 0, False: 0]
2852
0
                    continue;
2853
0
                }
2854
0
                addedNode.resolvedAddress = it->second.second;
2855
0
                addedNode.fConnected = true;
2856
0
                addedNode.fInbound = it->second.first;
2857
0
            }
2858
0
        }
2859
0
        ret.emplace_back(std::move(addedNode));
2860
0
    }
2861
2862
0
    return ret;
2863
0
}
2864
2865
void CConnman::ThreadOpenAddedConnections()
2866
0
{
2867
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2868
0
    AssertLockNotHeld(m_reconnections_mutex);
2869
0
    while (true)
  Branch (2869:12): [Folded - Ignored]
2870
0
    {
2871
0
        CSemaphoreGrant grant(*semAddnode);
2872
0
        std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2873
0
        bool tried = false;
2874
0
        for (const AddedNodeInfo& info : vInfo) {
  Branch (2874:40): [True: 0, False: 0]
2875
0
            if (!grant) {
  Branch (2875:17): [True: 0, False: 0]
2876
                // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2877
                // the addednodeinfo state might change.
2878
0
                break;
2879
0
            }
2880
0
            tried = true;
2881
0
            CAddress addr(CService(), NODE_NONE);
2882
0
            OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2883
0
            if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
  Branch (2883:17): [True: 0, False: 0]
2884
0
            grant = CSemaphoreGrant(*semAddnode, /*fTry=*/true);
2885
0
        }
2886
        // See if any reconnections are desired.
2887
0
        PerformReconnections();
2888
        // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2889
0
        if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
  Branch (2889:13): [True: 0, False: 0]
  Branch (2889:58): [True: 0, False: 0]
2890
0
            return;
2891
0
    }
2892
0
}
2893
2894
// if successful, this moves the passed grant to the constructed node
2895
void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant&& grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport)
2896
0
{
2897
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2898
0
    assert(conn_type != ConnectionType::INBOUND);
2899
2900
    //
2901
    // Initiate outbound network connection
2902
    //
2903
0
    if (interruptNet) {
  Branch (2903:9): [True: 0, False: 0]
2904
0
        return;
2905
0
    }
2906
0
    if (!fNetworkActive) {
  Branch (2906:9): [True: 0, False: 0]
2907
0
        return;
2908
0
    }
2909
0
    if (!pszDest) {
  Branch (2909:9): [True: 0, False: 0]
2910
0
        bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
  Branch (2910:38): [True: 0, False: 0]
  Branch (2910:51): [True: 0, False: 0]
  Branch (2910:91): [True: 0, False: 0]
2911
0
        if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
  Branch (2911:13): [True: 0, False: 0]
  Branch (2911:37): [True: 0, False: 0]
  Branch (2911:62): [True: 0, False: 0]
2912
0
            return;
2913
0
        }
2914
0
    } else if (FindNode(std::string(pszDest)))
  Branch (2914:16): [True: 0, False: 0]
2915
0
        return;
2916
2917
0
    CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport);
2918
2919
0
    if (!pnode)
  Branch (2919:9): [True: 0, False: 0]
2920
0
        return;
2921
0
    pnode->grantOutbound = std::move(grant_outbound);
2922
2923
0
    m_msgproc->InitializeNode(*pnode, nLocalServices);
2924
0
    {
2925
0
        LOCK(m_nodes_mutex);
2926
0
        m_nodes.push_back(pnode);
2927
2928
        // update connection count by network
2929
0
        if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
  Branch (2929:13): [True: 0, False: 0]
2930
0
    }
2931
0
}
2932
2933
Mutex NetEventsInterface::g_msgproc_mutex;
2934
2935
void CConnman::ThreadMessageHandler()
2936
0
{
2937
0
    LOCK(NetEventsInterface::g_msgproc_mutex);
2938
2939
0
    while (!flagInterruptMsgProc)
  Branch (2939:12): [True: 0, False: 0]
2940
0
    {
2941
0
        bool fMoreWork = false;
2942
2943
0
        {
2944
            // Randomize the order in which we process messages from/to our peers.
2945
            // This prevents attacks in which an attacker exploits having multiple
2946
            // consecutive connections in the m_nodes list.
2947
0
            const NodesSnapshot snap{*this, /*shuffle=*/true};
2948
2949
0
            for (CNode* pnode : snap.Nodes()) {
  Branch (2949:31): [True: 0, False: 0]
2950
0
                if (pnode->fDisconnect)
  Branch (2950:21): [True: 0, False: 0]
2951
0
                    continue;
2952
2953
                // Receive messages
2954
0
                bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
2955
0
                fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
  Branch (2955:31): [True: 0, False: 0]
  Branch (2955:48): [True: 0, False: 0]
2956
0
                if (flagInterruptMsgProc)
  Branch (2956:21): [True: 0, False: 0]
2957
0
                    return;
2958
                // Send messages
2959
0
                m_msgproc->SendMessages(pnode);
2960
2961
0
                if (flagInterruptMsgProc)
  Branch (2961:21): [True: 0, False: 0]
2962
0
                    return;
2963
0
            }
2964
0
        }
2965
2966
0
        WAIT_LOCK(mutexMsgProc, lock);
2967
0
        if (!fMoreWork) {
  Branch (2967:13): [True: 0, False: 0]
2968
0
            condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
2969
0
        }
2970
0
        fMsgProcWake = false;
2971
0
    }
2972
0
}
2973
2974
void CConnman::ThreadI2PAcceptIncoming()
2975
0
{
2976
0
    static constexpr auto err_wait_begin = 1s;
2977
0
    static constexpr auto err_wait_cap = 5min;
2978
0
    auto err_wait = err_wait_begin;
2979
2980
0
    bool advertising_listen_addr = false;
2981
0
    i2p::Connection conn;
2982
2983
0
    auto SleepOnFailure = [&]() {
2984
0
        interruptNet.sleep_for(err_wait);
2985
0
        if (err_wait < err_wait_cap) {
  Branch (2985:13): [True: 0, False: 0]
2986
0
            err_wait += 1s;
2987
0
        }
2988
0
    };
2989
2990
0
    while (!interruptNet) {
  Branch (2990:12): [True: 0, False: 0]
2991
2992
0
        if (!m_i2p_sam_session->Listen(conn)) {
  Branch (2992:13): [True: 0, False: 0]
2993
0
            if (advertising_listen_addr && conn.me.IsValid()) {
  Branch (2993:17): [True: 0, False: 0]
  Branch (2993:44): [True: 0, False: 0]
2994
0
                RemoveLocal(conn.me);
2995
0
                advertising_listen_addr = false;
2996
0
            }
2997
0
            SleepOnFailure();
2998
0
            continue;
2999
0
        }
3000
3001
0
        if (!advertising_listen_addr) {
  Branch (3001:13): [True: 0, False: 0]
3002
0
            AddLocal(conn.me, LOCAL_MANUAL);
3003
0
            advertising_listen_addr = true;
3004
0
        }
3005
3006
0
        if (!m_i2p_sam_session->Accept(conn)) {
  Branch (3006:13): [True: 0, False: 0]
3007
0
            SleepOnFailure();
3008
0
            continue;
3009
0
        }
3010
3011
0
        CreateNodeFromAcceptedSocket(std::move(conn.sock), NetPermissionFlags::None,
3012
0
                                     CAddress{conn.me, NODE_NONE}, CAddress{conn.peer, NODE_NONE});
3013
3014
0
        err_wait = err_wait_begin;
3015
0
    }
3016
0
}
3017
3018
bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3019
0
{
3020
0
    int nOne = 1;
3021
3022
    // Create socket for listening for incoming connections
3023
0
    struct sockaddr_storage sockaddr;
3024
0
    socklen_t len = sizeof(sockaddr);
3025
0
    if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
  Branch (3025:9): [True: 0, False: 0]
3026
0
    {
3027
0
        strError = strprintf(Untranslated("Bind address family for %s not supported"), addrBind.ToStringAddrPort());
3028
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3029
0
        return false;
3030
0
    }
3031
3032
0
    std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3033
0
    if (!sock) {
  Branch (3033:9): [True: 0, False: 0]
3034
0
        strError = strprintf(Untranslated("Couldn't open socket for incoming connections (socket returned error %s)"), NetworkErrorString(WSAGetLastError()));
3035
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3036
0
        return false;
3037
0
    }
3038
3039
    // Allow binding if the port is still in TIME_WAIT state after
3040
    // the program was closed and restarted.
3041
0
    if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
  Branch (3041:9): [True: 0, False: 0]
3042
0
        strError = strprintf(Untranslated("Error setting SO_REUSEADDR on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
3043
0
        LogPrintf("%s\n", strError.original);
3044
0
    }
3045
3046
    // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3047
    // and enable it by default or not. Try to enable it, if possible.
3048
0
    if (addrBind.IsIPv6()) {
  Branch (3048:9): [True: 0, False: 0]
3049
0
#ifdef IPV6_V6ONLY
3050
0
        if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
  Branch (3050:13): [True: 0, False: 0]
3051
0
            strError = strprintf(Untranslated("Error setting IPV6_V6ONLY on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
3052
0
            LogPrintf("%s\n", strError.original);
3053
0
        }
3054
0
#endif
3055
#ifdef WIN32
3056
        int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3057
        if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3058
            strError = strprintf(Untranslated("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
3059
            LogPrintf("%s\n", strError.original);
3060
        }
3061
#endif
3062
0
    }
3063
3064
0
    if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
  Branch (3064:9): [True: 0, False: 0]
3065
0
        int nErr = WSAGetLastError();
3066
0
        if (nErr == WSAEADDRINUSE)
  Branch (3066:13): [True: 0, False: 0]
3067
0
            strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), PACKAGE_NAME);
3068
0
        else
3069
0
            strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
3070
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3071
0
        return false;
3072
0
    }
3073
0
    LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3074
3075
    // Listen for incoming connections
3076
0
    if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
  Branch (3076:9): [True: 0, False: 0]
3077
0
    {
3078
0
        strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3079
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3080
0
        return false;
3081
0
    }
3082
3083
0
    vhListenSocket.emplace_back(std::move(sock), permissions);
3084
0
    return true;
3085
0
}
3086
3087
void Discover()
3088
0
{
3089
0
    if (!fDiscover)
  Branch (3089:9): [True: 0, False: 0]
3090
0
        return;
3091
3092
#ifdef WIN32
3093
    // Get local host IP
3094
    char pszHostName[256] = "";
3095
    if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR)
3096
    {
3097
        const std::vector<CNetAddr> addresses{LookupHost(pszHostName, 0, true)};
3098
        for (const CNetAddr& addr : addresses)
3099
        {
3100
            if (AddLocal(addr, LOCAL_IF))
3101
                LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToStringAddr());
3102
        }
3103
    }
3104
#elif (HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS)
3105
    // Get local host ip
3106
0
    struct ifaddrs* myaddrs;
3107
0
    if (getifaddrs(&myaddrs) == 0)
  Branch (3107:9): [True: 0, False: 0]
3108
0
    {
3109
0
        for (struct ifaddrs* ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next)
  Branch (3109:45): [True: 0, False: 0]
3110
0
        {
3111
0
            if (ifa->ifa_addr == nullptr) continue;
  Branch (3111:17): [True: 0, False: 0]
3112
0
            if ((ifa->ifa_flags & IFF_UP) == 0) continue;
  Branch (3112:17): [True: 0, False: 0]
3113
0
            if ((ifa->ifa_flags & IFF_LOOPBACK) != 0) continue;
  Branch (3113:17): [True: 0, False: 0]
3114
0
            if (ifa->ifa_addr->sa_family == AF_INET)
  Branch (3114:17): [True: 0, False: 0]
3115
0
            {
3116
0
                struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr);
3117
0
                CNetAddr addr(s4->sin_addr);
3118
0
                if (AddLocal(addr, LOCAL_IF))
  Branch (3118:21): [True: 0, False: 0]
3119
0
                    LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToStringAddr());
3120
0
            }
3121
0
            else if (ifa->ifa_addr->sa_family == AF_INET6)
  Branch (3121:22): [True: 0, False: 0]
3122
0
            {
3123
0
                struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr);
3124
0
                CNetAddr addr(s6->sin6_addr);
3125
0
                if (AddLocal(addr, LOCAL_IF))
  Branch (3125:21): [True: 0, False: 0]
3126
0
                    LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToStringAddr());
3127
0
            }
3128
0
        }
3129
0
        freeifaddrs(myaddrs);
3130
0
    }
3131
0
#endif
3132
0
}
3133
3134
void CConnman::SetNetworkActive(bool active)
3135
0
{
3136
0
    LogPrintf("%s: %s\n", __func__, active);
3137
3138
0
    if (fNetworkActive == active) {
  Branch (3138:9): [True: 0, False: 0]
3139
0
        return;
3140
0
    }
3141
3142
0
    fNetworkActive = active;
3143
3144
0
    if (m_client_interface) {
  Branch (3144:9): [True: 0, False: 0]
3145
0
        m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3146
0
    }
3147
0
}
3148
3149
CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
3150
                   const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
3151
0
    : addrman(addrman_in)
3152
0
    , m_netgroupman{netgroupman}
3153
0
    , nSeed0(nSeed0In)
3154
0
    , nSeed1(nSeed1In)
3155
0
    , m_params(params)
3156
0
{
3157
0
    SetTryNewOutboundPeer(false);
3158
3159
0
    Options connOptions;
3160
0
    Init(connOptions);
3161
0
    SetNetworkActive(network_active);
3162
0
}
3163
3164
NodeId CConnman::GetNewNodeId()
3165
0
{
3166
0
    return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3167
0
}
3168
3169
uint16_t CConnman::GetDefaultPort(Network net) const
3170
0
{
3171
0
    return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
  Branch (3171:12): [True: 0, False: 0]
3172
0
}
3173
3174
uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3175
0
{
3176
0
    CNetAddr a;
3177
0
    return a.SetSpecial(addr) ? GetDefaultPort(a.GetNetwork()) : m_params.GetDefaultPort();
  Branch (3177:12): [True: 0, False: 0]
3178
0
}
3179
3180
bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3181
0
{
3182
0
    const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3183
3184
0
    bilingual_str strError;
3185
0
    if (!BindListenPort(addr, strError, permissions)) {
  Branch (3185:9): [True: 0, False: 0]
3186
0
        if ((flags & BF_REPORT_ERROR) && m_client_interface) {
  Branch (3186:13): [True: 0, False: 0]
  Branch (3186:42): [True: 0, False: 0]
3187
0
            m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3188
0
        }
3189
0
        return false;
3190
0
    }
3191
3192
0
    if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
  Branch (3192:9): [True: 0, False: 0]
  Branch (3192:30): [True: 0, False: 0]
  Branch (3192:43): [True: 0, False: 0]
  Branch (3192:75): [True: 0, False: 0]
3193
0
        AddLocal(addr, LOCAL_BIND);
3194
0
    }
3195
3196
0
    return true;
3197
0
}
3198
3199
bool CConnman::InitBinds(const Options& options)
3200
0
{
3201
0
    for (const auto& addrBind : options.vBinds) {
  Branch (3201:31): [True: 0, False: 0]
3202
0
        if (!Bind(addrBind, BF_REPORT_ERROR, NetPermissionFlags::None)) {
  Branch (3202:13): [True: 0, False: 0]
3203
0
            return false;
3204
0
        }
3205
0
    }
3206
0
    for (const auto& addrBind : options.vWhiteBinds) {
  Branch (3206:31): [True: 0, False: 0]
3207
0
        if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
  Branch (3207:13): [True: 0, False: 0]
3208
0
            return false;
3209
0
        }
3210
0
    }
3211
0
    for (const auto& addr_bind : options.onion_binds) {
  Branch (3211:32): [True: 0, False: 0]
3212
0
        if (!Bind(addr_bind, BF_REPORT_ERROR | BF_DONT_ADVERTISE, NetPermissionFlags::None)) {
  Branch (3212:13): [True: 0, False: 0]
3213
0
            return false;
3214
0
        }
3215
0
    }
3216
0
    if (options.bind_on_any) {
  Branch (3216:9): [True: 0, False: 0]
3217
        // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3218
        // may not have IPv6 support and the user did not explicitly ask us to
3219
        // bind on that.
3220
0
        const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3221
0
        Bind(ipv6_any, BF_NONE, NetPermissionFlags::None);
3222
3223
0
        struct in_addr inaddr_any;
3224
0
        inaddr_any.s_addr = htonl(INADDR_ANY);
3225
0
        const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3226
0
        if (!Bind(ipv4_any, BF_REPORT_ERROR, NetPermissionFlags::None)) {
  Branch (3226:13): [True: 0, False: 0]
3227
0
            return false;
3228
0
        }
3229
0
    }
3230
0
    return true;
3231
0
}
3232
3233
bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3234
0
{
3235
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3236
0
    Init(connOptions);
3237
3238
0
    if (fListen && !InitBinds(connOptions)) {
  Branch (3238:9): [True: 0, False: 0]
  Branch (3238:20): [True: 0, False: 0]
3239
0
        if (m_client_interface) {
  Branch (3239:13): [True: 0, False: 0]
3240
0
            m_client_interface->ThreadSafeMessageBox(
3241
0
                _("Failed to listen on any port. Use -listen=0 if you want this."),
3242
0
                "", CClientUIInterface::MSG_ERROR);
3243
0
        }
3244
0
        return false;
3245
0
    }
3246
3247
0
    Proxy i2p_sam;
3248
0
    if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
  Branch (3248:9): [True: 0, False: 0]
  Branch (3248:39): [True: 0, False: 0]
3249
0
        m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3250
0
                                                                i2p_sam, &interruptNet);
3251
0
    }
3252
3253
0
    for (const auto& strDest : connOptions.vSeedNodes) {
  Branch (3253:30): [True: 0, False: 0]
3254
0
        AddAddrFetch(strDest);
3255
0
    }
3256
3257
0
    if (m_use_addrman_outgoing) {
  Branch (3257:9): [True: 0, False: 0]
3258
        // Load addresses from anchors.dat
3259
0
        m_anchors = ReadAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME);
3260
0
        if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
  Branch (3260:13): [True: 0, False: 0]
3261
0
            m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3262
0
        }
3263
0
        LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3264
0
    }
3265
3266
0
    if (m_client_interface) {
  Branch (3266:9): [True: 0, False: 0]
3267
0
        m_client_interface->InitMessage(_("Starting network threads…").translated);
3268
0
    }
3269
3270
0
    fAddressesInitialized = true;
3271
3272
0
    if (semOutbound == nullptr) {
  Branch (3272:9): [True: 0, False: 0]
3273
        // initialize semaphore
3274
0
        semOutbound = std::make_unique<CSemaphore>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3275
0
    }
3276
0
    if (semAddnode == nullptr) {
  Branch (3276:9): [True: 0, False: 0]
3277
        // initialize semaphore
3278
0
        semAddnode = std::make_unique<CSemaphore>(m_max_addnode);
3279
0
    }
3280
3281
    //
3282
    // Start threads
3283
    //
3284
0
    assert(m_msgproc);
3285
0
    interruptNet.reset();
3286
0
    flagInterruptMsgProc = false;
3287
3288
0
    {
3289
0
        LOCK(mutexMsgProc);
3290
0
        fMsgProcWake = false;
3291
0
    }
3292
3293
    // Send and receive from sockets, accept connections
3294
0
    threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3295
3296
0
    if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
  Branch (3296:9): [True: 0, False: 0]
3297
0
        LogPrintf("DNS seeding disabled\n");
3298
0
    else
3299
0
        threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3300
3301
    // Initiate manual connections
3302
0
    threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3303
3304
0
    if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
  Branch (3304:9): [True: 0, False: 0]
  Branch (3304:47): [True: 0, False: 0]
3305
0
        if (m_client_interface) {
  Branch (3305:13): [True: 0, False: 0]
3306
0
            m_client_interface->ThreadSafeMessageBox(
3307
0
                _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3308
0
                "", CClientUIInterface::MSG_ERROR);
3309
0
        }
3310
0
        return false;
3311
0
    }
3312
0
    if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
  Branch (3312:9): [True: 0, False: 0]
  Branch (3312:47): [True: 0, False: 0]
3313
0
        threadOpenConnections = std::thread(
3314
0
            &util::TraceThread, "opencon",
3315
0
            [this, connect = connOptions.m_specified_outgoing] { ThreadOpenConnections(connect); });
3316
0
    }
3317
3318
    // Process messages
3319
0
    threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3320
3321
0
    if (m_i2p_sam_session) {
  Branch (3321:9): [True: 0, False: 0]
3322
0
        threadI2PAcceptIncoming =
3323
0
            std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3324
0
    }
3325
3326
    // Dump network addresses
3327
0
    scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3328
3329
    // Run the ASMap Health check once and then schedule it to run every 24h.
3330
0
    if (m_netgroupman.UsingASMap()) {
  Branch (3330:9): [True: 0, False: 0]
3331
0
        ASMapHealthCheck();
3332
0
        scheduler.scheduleEvery([this] { ASMapHealthCheck(); }, ASMAP_HEALTH_CHECK_INTERVAL);
3333
0
    }
3334
3335
0
    return true;
3336
0
}
3337
3338
class CNetCleanup
3339
{
3340
public:
3341
    CNetCleanup() = default;
3342
3343
    ~CNetCleanup()
3344
0
    {
3345
#ifdef WIN32
3346
        // Shutdown Windows Sockets
3347
        WSACleanup();
3348
#endif
3349
0
    }
3350
};
3351
static CNetCleanup instance_of_cnetcleanup;
3352
3353
void CConnman::Interrupt()
3354
1
{
3355
1
    {
3356
1
        LOCK(mutexMsgProc);
3357
1
        flagInterruptMsgProc = true;
3358
1
    }
3359
1
    condMsgProc.notify_all();
3360
3361
1
    interruptNet();
3362
1
    g_socks5_interrupt();
3363
3364
1
    if (semOutbound) {
  Branch (3364:9): [True: 0, False: 1]
3365
0
        for (int i=0; i<m_max_automatic_outbound; i++) {
  Branch (3365:23): [True: 0, False: 0]
3366
0
            semOutbound->post();
3367
0
        }
3368
0
    }
3369
3370
1
    if (semAddnode) {
  Branch (3370:9): [True: 0, False: 1]
3371
0
        for (int i=0; i<m_max_addnode; i++) {
  Branch (3371:23): [True: 0, False: 0]
3372
0
            semAddnode->post();
3373
0
        }
3374
0
    }
3375
1
}
3376
3377
void CConnman::StopThreads()
3378
1
{
3379
1
    if (threadI2PAcceptIncoming.joinable()) {
  Branch (3379:9): [True: 0, False: 1]
3380
0
        threadI2PAcceptIncoming.join();
3381
0
    }
3382
1
    if (threadMessageHandler.joinable())
  Branch (3382:9): [True: 0, False: 1]
3383
0
        threadMessageHandler.join();
3384
1
    if (threadOpenConnections.joinable())
  Branch (3384:9): [True: 0, False: 1]
3385
0
        threadOpenConnections.join();
3386
1
    if (threadOpenAddedConnections.joinable())
  Branch (3386:9): [True: 0, False: 1]
3387
0
        threadOpenAddedConnections.join();
3388
1
    if (threadDNSAddressSeed.joinable())
  Branch (3388:9): [True: 0, False: 1]
3389
0
        threadDNSAddressSeed.join();
3390
1
    if (threadSocketHandler.joinable())
  Branch (3390:9): [True: 0, False: 1]
3391
0
        threadSocketHandler.join();
3392
1
}
3393
3394
void CConnman::StopNodes()
3395
291
{
3396
291
    if (fAddressesInitialized) {
  Branch (3396:9): [True: 0, False: 291]
3397
0
        DumpAddresses();
3398
0
        fAddressesInitialized = false;
3399
3400
0
        if (m_use_addrman_outgoing) {
  Branch (3400:13): [True: 0, False: 0]
3401
            // Anchor connections are only dumped during clean shutdown.
3402
0
            std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3403
0
            if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
  Branch (3403:17): [True: 0, False: 0]
3404
0
                anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3405
0
            }
3406
0
            DumpAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME, anchors_to_dump);
3407
0
        }
3408
0
    }
3409
3410
    // Delete peer connections.
3411
291
    std::vector<CNode*> nodes;
3412
291
    WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3413
870
    for (CNode* pnode : nodes) {
  Branch (3413:23): [True: 870, False: 291]
3414
870
        pnode->CloseSocketDisconnect();
3415
870
        DeleteNode(pnode);
3416
870
    }
3417
3418
291
    for (CNode* pnode : m_nodes_disconnected) {
  Branch (3418:23): [True: 0, False: 291]
3419
0
        DeleteNode(pnode);
3420
0
    }
3421
291
    m_nodes_disconnected.clear();
3422
291
    vhListenSocket.clear();
3423
291
    semOutbound.reset();
3424
291
    semAddnode.reset();
3425
291
}
3426
3427
void CConnman::DeleteNode(CNode* pnode)
3428
870
{
3429
870
    assert(pnode);
3430
870
    m_msgproc->FinalizeNode(*pnode);
3431
870
    delete pnode;
3432
870
}
3433
3434
CConnman::~CConnman()
3435
1
{
3436
1
    Interrupt();
3437
1
    Stop();
3438
1
}
3439
3440
std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3441
0
{
3442
0
    std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3443
0
    if (m_banman) {
  Branch (3443:9): [True: 0, False: 0]
3444
0
        addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3445
0
                        [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
  Branch (3445:61): [True: 0, False: 0]
  Branch (3445:94): [True: 0, False: 0]
3446
0
                        addresses.end());
3447
0
    }
3448
0
    return addresses;
3449
0
}
3450
3451
std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3452
0
{
3453
0
    auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3454
0
    uint64_t cache_id = GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
3455
0
        .Write(requestor.ConnectedThroughNetwork())
3456
0
        .Write(local_socket_bytes)
3457
        // For outbound connections, the port of the bound address is randomly
3458
        // assigned by the OS and would therefore not be useful for seeding.
3459
0
        .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
  Branch (3459:16): [True: 0, False: 0]
3460
0
        .Finalize();
3461
0
    const auto current_time = GetTime<std::chrono::microseconds>();
3462
0
    auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
3463
0
    CachedAddrResponse& cache_entry = r.first->second;
3464
0
    if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
  Branch (3464:9): [True: 0, False: 0]
3465
0
        cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /*network=*/std::nullopt);
3466
        // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3467
        // and the usefulness of ADDR responses to honest users.
3468
        //
3469
        // Longer cache lifetime makes it more difficult for an attacker to scrape
3470
        // enough AddrMan data to maliciously infer something useful.
3471
        // By the time an attacker scraped enough AddrMan records, most of
3472
        // the records should be old enough to not leak topology info by
3473
        // e.g. analyzing real-time changes in timestamps.
3474
        //
3475
        // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3476
        // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3477
        // most of it could be scraped (considering that timestamps are updated via
3478
        // ADDR self-announcements and when nodes communicate).
3479
        // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3480
        // (because even several timestamps of the same handful of nodes may leak privacy).
3481
        //
3482
        // On the other hand, longer cache lifetime makes ADDR responses
3483
        // outdated and less useful for an honest requestor, e.g. if most nodes
3484
        // in the ADDR response are no longer active.
3485
        //
3486
        // However, the churn in the network is known to be rather low. Since we consider
3487
        // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3488
        // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3489
        // in terms of the freshness of the response.
3490
0
        cache_entry.m_cache_entry_expiration = current_time +
3491
0
            21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3492
0
    }
3493
0
    return cache_entry.m_addrs_response_cache;
3494
0
}
3495
3496
bool CConnman::AddNode(const AddedNodeParams& add)
3497
0
{
3498
0
    const CService resolved(LookupNumeric(add.m_added_node, GetDefaultPort(add.m_added_node)));
3499
0
    const bool resolved_is_valid{resolved.IsValid()};
3500
3501
0
    LOCK(m_added_nodes_mutex);
3502
0
    for (const auto& it : m_added_node_params) {
  Branch (3502:25): [True: 0, False: 0]
3503
0
        if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
  Branch (3503:13): [True: 0, False: 0]
  Branch (3503:13): [True: 0, False: 0]
  Branch (3503:53): [True: 0, False: 0]
  Branch (3503:74): [True: 0, False: 0]
3504
0
    }
3505
3506
0
    m_added_node_params.push_back(add);
3507
0
    return true;
3508
0
}
3509
3510
bool CConnman::RemoveAddedNode(const std::string& strNode)
3511
0
{
3512
0
    LOCK(m_added_nodes_mutex);
3513
0
    for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
  Branch (3513:49): [True: 0, False: 0]
3514
0
        if (strNode == it->m_added_node) {
  Branch (3514:13): [True: 0, False: 0]
3515
0
            m_added_node_params.erase(it);
3516
0
            return true;
3517
0
        }
3518
0
    }
3519
0
    return false;
3520
0
}
3521
3522
bool CConnman::AddedNodesContain(const CAddress& addr) const
3523
0
{
3524
0
    AssertLockNotHeld(m_added_nodes_mutex);
3525
0
    const std::string addr_str{addr.ToStringAddr()};
3526
0
    const std::string addr_port_str{addr.ToStringAddrPort()};
3527
0
    LOCK(m_added_nodes_mutex);
3528
0
    return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
  Branch (3528:13): [True: 0, False: 0]
3529
0
            && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
  Branch (3529:16): [True: 0, False: 0]
3530
0
                           [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
  Branch (3530:56): [True: 0, False: 0]
  Branch (3530:86): [True: 0, False: 0]
3531
0
}
3532
3533
size_t CConnman::GetNodeCount(ConnectionDirection flags) const
3534
0
{
3535
0
    LOCK(m_nodes_mutex);
3536
0
    if (flags == ConnectionDirection::Both) // Shortcut if we want total
  Branch (3536:9): [True: 0, False: 0]
3537
0
        return m_nodes.size();
3538
3539
0
    int nNum = 0;
3540
0
    for (const auto& pnode : m_nodes) {
  Branch (3540:28): [True: 0, False: 0]
3541
0
        if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
  Branch (3541:13): [True: 0, False: 0]
  Branch (3541:22): [True: 0, False: 0]
3542
0
            nNum++;
3543
0
        }
3544
0
    }
3545
3546
0
    return nNum;
3547
0
}
3548
3549
3550
std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3551
0
{
3552
0
    LOCK(g_maplocalhost_mutex);
3553
0
    return mapLocalHost;
3554
0
}
3555
3556
uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3557
1.45k
{
3558
1.45k
    return m_netgroupman.GetMappedAS(addr);
3559
1.45k
}
3560
3561
void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3562
0
{
3563
0
    vstats.clear();
3564
0
    LOCK(m_nodes_mutex);
3565
0
    vstats.reserve(m_nodes.size());
3566
0
    for (CNode* pnode : m_nodes) {
  Branch (3566:23): [True: 0, False: 0]
3567
0
        vstats.emplace_back();
3568
0
        pnode->CopyStats(vstats.back());
3569
0
        vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3570
0
    }
3571
0
}
3572
3573
bool CConnman::DisconnectNode(const std::string& strNode)
3574
0
{
3575
0
    LOCK(m_nodes_mutex);
3576
0
    if (CNode* pnode = FindNode(strNode)) {
  Branch (3576:16): [True: 0, False: 0]
3577
0
        LogPrint(BCLog::NET, "disconnect by address%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->GetId());
3578
0
        pnode->fDisconnect = true;
3579
0
        return true;
3580
0
    }
3581
0
    return false;
3582
0
}
3583
3584
bool CConnman::DisconnectNode(const CSubNet& subnet)
3585
0
{
3586
0
    bool disconnected = false;
3587
0
    LOCK(m_nodes_mutex);
3588
0
    for (CNode* pnode : m_nodes) {
  Branch (3588:23): [True: 0, False: 0]
3589
0
        if (subnet.Match(pnode->addr)) {
  Branch (3589:13): [True: 0, False: 0]
3590
0
            LogPrint(BCLog::NET, "disconnect by subnet%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->GetId());
3591
0
            pnode->fDisconnect = true;
3592
0
            disconnected = true;
3593
0
        }
3594
0
    }
3595
0
    return disconnected;
3596
0
}
3597
3598
bool CConnman::DisconnectNode(const CNetAddr& addr)
3599
0
{
3600
0
    return DisconnectNode(CSubNet(addr));
3601
0
}
3602
3603
bool CConnman::DisconnectNode(NodeId id)
3604
0
{
3605
0
    LOCK(m_nodes_mutex);
3606
0
    for(CNode* pnode : m_nodes) {
  Branch (3606:22): [True: 0, False: 0]
3607
0
        if (id == pnode->GetId()) {
  Branch (3607:13): [True: 0, False: 0]
3608
0
            LogPrint(BCLog::NET, "disconnect by id peer=%d; disconnecting\n", pnode->GetId());
3609
0
            pnode->fDisconnect = true;
3610
0
            return true;
3611
0
        }
3612
0
    }
3613
0
    return false;
3614
0
}
3615
3616
void CConnman::RecordBytesRecv(uint64_t bytes)
3617
0
{
3618
0
    nTotalBytesRecv += bytes;
3619
0
}
3620
3621
void CConnman::RecordBytesSent(uint64_t bytes)
3622
0
{
3623
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3624
0
    LOCK(m_total_bytes_sent_mutex);
3625
3626
0
    nTotalBytesSent += bytes;
3627
3628
0
    const auto now = GetTime<std::chrono::seconds>();
3629
0
    if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
  Branch (3629:9): [True: 0, False: 0]
3630
0
    {
3631
        // timeframe expired, reset cycle
3632
0
        nMaxOutboundCycleStartTime = now;
3633
0
        nMaxOutboundTotalBytesSentInCycle = 0;
3634
0
    }
3635
3636
0
    nMaxOutboundTotalBytesSentInCycle += bytes;
3637
0
}
3638
3639
uint64_t CConnman::GetMaxOutboundTarget() const
3640
0
{
3641
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3642
0
    LOCK(m_total_bytes_sent_mutex);
3643
0
    return nMaxOutboundLimit;
3644
0
}
3645
3646
std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3647
0
{
3648
0
    return MAX_UPLOAD_TIMEFRAME;
3649
0
}
3650
3651
std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() const
3652
0
{
3653
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3654
0
    LOCK(m_total_bytes_sent_mutex);
3655
0
    return GetMaxOutboundTimeLeftInCycle_();
3656
0
}
3657
3658
std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle_() const
3659
0
{
3660
0
    AssertLockHeld(m_total_bytes_sent_mutex);
3661
3662
0
    if (nMaxOutboundLimit == 0)
  Branch (3662:9): [True: 0, False: 0]
3663
0
        return 0s;
3664
3665
0
    if (nMaxOutboundCycleStartTime.count() == 0)
  Branch (3665:9): [True: 0, False: 0]
3666
0
        return MAX_UPLOAD_TIMEFRAME;
3667
3668
0
    const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3669
0
    const auto now = GetTime<std::chrono::seconds>();
3670
0
    return (cycleEndTime < now) ? 0s : cycleEndTime - now;
  Branch (3670:12): [True: 0, False: 0]
3671
0
}
3672
3673
bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3674
0
{
3675
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3676
0
    LOCK(m_total_bytes_sent_mutex);
3677
0
    if (nMaxOutboundLimit == 0)
  Branch (3677:9): [True: 0, False: 0]
3678
0
        return false;
3679
3680
0
    if (historicalBlockServingLimit)
  Branch (3680:9): [True: 0, False: 0]
3681
0
    {
3682
        // keep a large enough buffer to at least relay each block once
3683
0
        const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3684
0
        const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3685
0
        if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
  Branch (3685:13): [True: 0, False: 0]
  Branch (3685:44): [True: 0, False: 0]
3686
0
            return true;
3687
0
    }
3688
0
    else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
  Branch (3688:14): [True: 0, False: 0]
3689
0
        return true;
3690
3691
0
    return false;
3692
0
}
3693
3694
uint64_t CConnman::GetOutboundTargetBytesLeft() const
3695
0
{
3696
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3697
0
    LOCK(m_total_bytes_sent_mutex);
3698
0
    if (nMaxOutboundLimit == 0)
  Branch (3698:9): [True: 0, False: 0]
3699
0
        return 0;
3700
3701
0
    return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
  Branch (3701:12): [True: 0, False: 0]
3702
0
}
3703
3704
uint64_t CConnman::GetTotalBytesRecv() const
3705
0
{
3706
0
    return nTotalBytesRecv;
3707
0
}
3708
3709
uint64_t CConnman::GetTotalBytesSent() const
3710
0
{
3711
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3712
0
    LOCK(m_total_bytes_sent_mutex);
3713
0
    return nTotalBytesSent;
3714
0
}
3715
3716
ServiceFlags CConnman::GetLocalServices() const
3717
0
{
3718
0
    return nLocalServices;
3719
0
}
3720
3721
static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3722
870
{
3723
870
    if (use_v2transport) {
  Branch (3723:9): [True: 0, False: 870]
3724
0
        return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3725
870
    } else {
3726
870
        return std::make_unique<V1Transport>(id);
3727
870
    }
3728
870
}
3729
3730
CNode::CNode(NodeId idIn,
3731
             std::shared_ptr<Sock> sock,
3732
             const CAddress& addrIn,
3733
             uint64_t nKeyedNetGroupIn,
3734
             uint64_t nLocalHostNonceIn,
3735
             const CAddress& addrBindIn,
3736
             const std::string& addrNameIn,
3737
             ConnectionType conn_type_in,
3738
             bool inbound_onion,
3739
             CNodeOptions&& node_opts)
3740
870
    : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3741
870
      m_permission_flags{node_opts.permission_flags},
3742
870
      m_sock{sock},
3743
870
      m_connected{GetTime<std::chrono::seconds>()},
3744
870
      addr{addrIn},
3745
870
      addrBind{addrBindIn},
3746
870
      m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
  Branch (3746:19): [True: 870, False: 0]
3747
870
      m_dest(addrNameIn),
3748
870
      m_inbound_onion{inbound_onion},
3749
870
      m_prefer_evict{node_opts.prefer_evict},
3750
870
      nKeyedNetGroup{nKeyedNetGroupIn},
3751
870
      m_conn_type{conn_type_in},
3752
870
      id{idIn},
3753
870
      nLocalHostNonce{nLocalHostNonceIn},
3754
870
      m_recv_flood_size{node_opts.recv_flood_size},
3755
870
      m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
3756
870
{
3757
870
    if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
  Branch (3757:9): [True: 0, False: 870]
3758
3759
30.4k
    for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
  Branch (3759:26): [True: 30.4k, False: 870]
3760
30.4k
        mapRecvBytesPerMsgType[msg] = 0;
3761
30.4k
    }
3762
870
    mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3763
3764
870
    if (fLogIPs) {
  Branch (3764:9): [True: 0, False: 870]
3765
0
        LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
3766
870
    } else {
3767
870
        LogPrint(BCLog::NET, "Added connection peer=%d\n", id);
3768
870
    }
3769
870
}
3770
3771
void CNode::MarkReceivedMsgsForProcessing()
3772
13.5k
{
3773
13.5k
    AssertLockNotHeld(m_msg_process_queue_mutex);
3774
3775
13.5k
    size_t nSizeAdded = 0;
3776
13.5k
    for (const auto& msg : vRecvMsg) {
  Branch (3776:26): [True: 13.5k, False: 13.5k]
3777
        // vRecvMsg contains only completed CNetMessage
3778
        // the single possible partially deserialized message are held by TransportDeserializer
3779
13.5k
        nSizeAdded += msg.m_raw_message_size;
3780
13.5k
    }
3781
3782
13.5k
    LOCK(m_msg_process_queue_mutex);
3783
13.5k
    m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3784
13.5k
    m_msg_process_queue_size += nSizeAdded;
3785
13.5k
    fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3786
13.5k
}
3787
3788
std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3789
13.5k
{
3790
13.5k
    LOCK(m_msg_process_queue_mutex);
3791
13.5k
    if (m_msg_process_queue.empty()) return std::nullopt;
  Branch (3791:9): [True: 0, False: 13.5k]
3792
3793
13.5k
    std::list<CNetMessage> msgs;
3794
    // Just take one message
3795
13.5k
    msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3796
13.5k
    m_msg_process_queue_size -= msgs.front().m_raw_message_size;
3797
13.5k
    fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3798
3799
13.5k
    return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3800
13.5k
}
3801
3802
bool CConnman::NodeFullyConnected(const CNode* pnode)
3803
0
{
3804
0
    return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
  Branch (3804:12): [True: 0, False: 0]
  Branch (3804:21): [True: 0, False: 0]
  Branch (3804:54): [True: 0, False: 0]
3805
0
}
3806
3807
void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
3808
8.56k
{
3809
8.56k
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3810
8.56k
    size_t nMessageSize = msg.data.size();
3811
8.56k
    LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3812
8.56k
    if (gArgs.GetBoolArg("-capturemessages", false)) {
  Branch (3812:9): [True: 0, False: 8.56k]
3813
0
        CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3814
0
    }
3815
3816
8.56k
    TRACE6(net, outbound_message,
3817
8.56k
        pnode->GetId(),
3818
8.56k
        pnode->m_addr_name.c_str(),
3819
8.56k
        pnode->ConnectionTypeAsString().c_str(),
3820
8.56k
        msg.m_type.c_str(),
3821
8.56k
        msg.data.size(),
3822
8.56k
        msg.data.data()
3823
8.56k
    );
3824
3825
8.56k
    size_t nBytesSent = 0;
3826
8.56k
    {
3827
8.56k
        LOCK(pnode->cs_vSend);
3828
        // Check if the transport still has unsent bytes, and indicate to it that we're about to
3829
        // give it a message to send.
3830
8.56k
        const auto& [to_send, more, _msg_type] =
3831
8.56k
            pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3832
8.56k
        const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
  Branch (3832:36): [True: 3.92k, False: 4.63k]
  Branch (3832:55): [True: 3.92k, False: 0]
3833
3834
        // Update memory usage of send buffer.
3835
8.56k
        pnode->m_send_memusage += msg.GetMemoryUsage();
3836
8.56k
        if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
  Branch (3836:13): [True: 8.56k, False: 0]
3837
        // Move message to vSendMsg queue.
3838
8.56k
        pnode->vSendMsg.push_back(std::move(msg));
3839
3840
        // If there was nothing to send before, and there is now (predicted by the "more" value
3841
        // returned by the GetBytesToSend call above), attempt "optimistic write":
3842
        // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3843
        // doing a send, try sending from the calling thread if the queue was empty before.
3844
        // With a V1Transport, more will always be true here, because adding a message always
3845
        // results in sendable bytes there, but with V2Transport this is not the case (it may
3846
        // still be in the handshake).
3847
8.56k
        if (queue_was_empty && more) {
  Branch (3847:13): [True: 3.92k, False: 4.63k]
  Branch (3847:32): [True: 3.92k, False: 0]
3848
3.92k
            std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3849
3.92k
        }
3850
8.56k
    }
3851
8.56k
    if (nBytesSent) RecordBytesSent(nBytesSent);
  Branch (3851:9): [True: 0, False: 8.56k]
3852
8.56k
}
3853
3854
bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3855
0
{
3856
0
    CNode* found = nullptr;
3857
0
    LOCK(m_nodes_mutex);
3858
0
    for (auto&& pnode : m_nodes) {
  Branch (3858:23): [True: 0, False: 0]
3859
0
        if(pnode->GetId() == id) {
  Branch (3859:12): [True: 0, False: 0]
3860
0
            found = pnode;
3861
0
            break;
3862
0
        }
3863
0
    }
3864
0
    return found != nullptr && NodeFullyConnected(found) && func(found);
  Branch (3864:12): [True: 0, False: 0]
  Branch (3864:32): [True: 0, False: 0]
  Branch (3864:61): [True: 0, False: 0]
3865
0
}
3866
3867
CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
3868
0
{
3869
0
    return CSipHasher(nSeed0, nSeed1).Write(id);
3870
0
}
3871
3872
uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& address) const
3873
0
{
3874
0
    std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3875
3876
0
    return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup).Finalize();
3877
0
}
3878
3879
void CConnman::PerformReconnections()
3880
0
{
3881
0
    AssertLockNotHeld(m_reconnections_mutex);
3882
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
3883
0
    while (true) {
  Branch (3883:12): [Folded - Ignored]
3884
        // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3885
0
        decltype(m_reconnections) todo;
3886
0
        {
3887
0
            LOCK(m_reconnections_mutex);
3888
0
            if (m_reconnections.empty()) break;
  Branch (3888:17): [True: 0, False: 0]
3889
0
            todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3890
0
        }
3891
3892
0
        auto& item = *todo.begin();
3893
0
        OpenNetworkConnection(item.addr_connect,
3894
                              // We only reconnect if the first attempt to connect succeeded at
3895
                              // connection time, but then failed after the CNode object was
3896
                              // created. Since we already know connecting is possible, do not
3897
                              // count failure to reconnect.
3898
0
                              /*fCountFailure=*/false,
3899
0
                              std::move(item.grant),
3900
0
                              item.destination.empty() ? nullptr : item.destination.c_str(),
  Branch (3900:31): [True: 0, False: 0]
3901
0
                              item.conn_type,
3902
0
                              item.use_v2transport);
3903
0
    }
3904
0
}
3905
3906
void CConnman::ASMapHealthCheck()
3907
0
{
3908
0
    const std::vector<CAddress> v4_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV4, /*filtered=*/ false)};
3909
0
    const std::vector<CAddress> v6_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV6, /*filtered=*/ false)};
3910
0
    std::vector<CNetAddr> clearnet_addrs;
3911
0
    clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
3912
0
    std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
3913
0
        [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3914
0
    std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
3915
0
        [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3916
0
    m_netgroupman.ASMapHealthCheck(clearnet_addrs);
3917
0
}
3918
3919
// Dump binary message to file, with timestamp.
3920
static void CaptureMessageToFile(const CAddress& addr,
3921
                                 const std::string& msg_type,
3922
                                 Span<const unsigned char> data,
3923
                                 bool is_incoming)
3924
0
{
3925
    // Note: This function captures the message at the time of processing,
3926
    // not at socket receive/send time.
3927
    // This ensures that the messages are always in order from an application
3928
    // layer (processing) perspective.
3929
0
    auto now = GetTime<std::chrono::microseconds>();
3930
3931
    // Windows folder names cannot include a colon
3932
0
    std::string clean_addr = addr.ToStringAddrPort();
3933
0
    std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
3934
3935
0
    fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
3936
0
    fs::create_directories(base_path);
3937
3938
0
    fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
  Branch (3938:34): [True: 0, False: 0]
3939
0
    AutoFile f{fsbridge::fopen(path, "ab")};
3940
3941
0
    ser_writedata64(f, now.count());
3942
0
    f << Span{msg_type};
3943
0
    for (auto i = msg_type.length(); i < CMessageHeader::COMMAND_SIZE; ++i) {
  Branch (3943:38): [True: 0, False: 0]
3944
0
        f << uint8_t{'\0'};
3945
0
    }
3946
0
    uint32_t size = data.size();
3947
0
    ser_writedata32(f, size);
3948
0
    f << data;
3949
0
}
3950
3951
std::function<void(const CAddress& addr,
3952
                   const std::string& msg_type,
3953
                   Span<const unsigned char> data,
3954
                   bool is_incoming)>
3955
    CaptureMessage = CaptureMessageToFile;