Coverage Report

Created: 2024-08-21 05:08

/workdir/bitcoin/src/netaddress.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-2022 The Bitcoin Core developers
3
// Distributed under the MIT software license, see the accompanying
4
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6
#include <netaddress.h>
7
8
#include <crypto/common.h>
9
#include <crypto/sha3.h>
10
#include <hash.h>
11
#include <prevector.h>
12
#include <tinyformat.h>
13
#include <util/strencodings.h>
14
#include <util/string.h>
15
16
#include <algorithm>
17
#include <array>
18
#include <cstdint>
19
#include <ios>
20
#include <iterator>
21
#include <tuple>
22
23
using util::ContainsNoNUL;
24
using util::HasPrefix;
25
26
CNetAddr::BIP155Network CNetAddr::GetBIP155Network() const
27
0
{
28
0
    switch (m_net) {
  Branch (28:13): [True: 0, False: 0]
29
0
    case NET_IPV4:
  Branch (29:5): [True: 0, False: 0]
30
0
        return BIP155Network::IPV4;
31
0
    case NET_IPV6:
  Branch (31:5): [True: 0, False: 0]
32
0
        return BIP155Network::IPV6;
33
0
    case NET_ONION:
  Branch (33:5): [True: 0, False: 0]
34
0
        return BIP155Network::TORV3;
35
0
    case NET_I2P:
  Branch (35:5): [True: 0, False: 0]
36
0
        return BIP155Network::I2P;
37
0
    case NET_CJDNS:
  Branch (37:5): [True: 0, False: 0]
38
0
        return BIP155Network::CJDNS;
39
0
    case NET_INTERNAL:   // should have been handled before calling this function
  Branch (39:5): [True: 0, False: 0]
40
0
    case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
  Branch (40:5): [True: 0, False: 0]
41
0
    case NET_MAX:        // m_net is never and should not be set to NET_MAX
  Branch (41:5): [True: 0, False: 0]
42
0
        assert(false);
43
0
    } // no default case, so the compiler can warn about missing cases
44
45
0
    assert(false);
46
0
}
47
48
bool CNetAddr::SetNetFromBIP155Network(uint8_t possible_bip155_net, size_t address_size)
49
0
{
50
0
    switch (possible_bip155_net) {
  Branch (50:13): [True: 0, False: 0]
51
0
    case BIP155Network::IPV4:
  Branch (51:5): [True: 0, False: 0]
52
0
        if (address_size == ADDR_IPV4_SIZE) {
  Branch (52:13): [True: 0, False: 0]
53
0
            m_net = NET_IPV4;
54
0
            return true;
55
0
        }
56
0
        throw std::ios_base::failure(
57
0
            strprintf("BIP155 IPv4 address with length %u (should be %u)", address_size,
58
0
                      ADDR_IPV4_SIZE));
59
0
    case BIP155Network::IPV6:
  Branch (59:5): [True: 0, False: 0]
60
0
        if (address_size == ADDR_IPV6_SIZE) {
  Branch (60:13): [True: 0, False: 0]
61
0
            m_net = NET_IPV6;
62
0
            return true;
63
0
        }
64
0
        throw std::ios_base::failure(
65
0
            strprintf("BIP155 IPv6 address with length %u (should be %u)", address_size,
66
0
                      ADDR_IPV6_SIZE));
67
0
    case BIP155Network::TORV3:
  Branch (67:5): [True: 0, False: 0]
68
0
        if (address_size == ADDR_TORV3_SIZE) {
  Branch (68:13): [True: 0, False: 0]
69
0
            m_net = NET_ONION;
70
0
            return true;
71
0
        }
72
0
        throw std::ios_base::failure(
73
0
            strprintf("BIP155 TORv3 address with length %u (should be %u)", address_size,
74
0
                      ADDR_TORV3_SIZE));
75
0
    case BIP155Network::I2P:
  Branch (75:5): [True: 0, False: 0]
76
0
        if (address_size == ADDR_I2P_SIZE) {
  Branch (76:13): [True: 0, False: 0]
77
0
            m_net = NET_I2P;
78
0
            return true;
79
0
        }
80
0
        throw std::ios_base::failure(
81
0
            strprintf("BIP155 I2P address with length %u (should be %u)", address_size,
82
0
                      ADDR_I2P_SIZE));
83
0
    case BIP155Network::CJDNS:
  Branch (83:5): [True: 0, False: 0]
84
0
        if (address_size == ADDR_CJDNS_SIZE) {
  Branch (84:13): [True: 0, False: 0]
85
0
            m_net = NET_CJDNS;
86
0
            return true;
87
0
        }
88
0
        throw std::ios_base::failure(
89
0
            strprintf("BIP155 CJDNS address with length %u (should be %u)", address_size,
90
0
                      ADDR_CJDNS_SIZE));
91
0
    }
92
93
    // Don't throw on addresses with unknown network ids (maybe from the future).
94
    // Instead silently drop them and have the unserialization code consume
95
    // subsequent ones which may be known to us.
96
0
    return false;
97
0
}
98
99
/**
100
 * Construct an unspecified IPv6 network address (::/128).
101
 *
102
 * @note This address is considered invalid by CNetAddr::IsValid()
103
 */
104
6.09k
CNetAddr::CNetAddr() = default;
105
106
void CNetAddr::SetIP(const CNetAddr& ipIn)
107
0
{
108
    // Size check.
109
0
    switch (ipIn.m_net) {
  Branch (109:13): [True: 0, False: 0]
110
0
    case NET_IPV4:
  Branch (110:5): [True: 0, False: 0]
111
0
        assert(ipIn.m_addr.size() == ADDR_IPV4_SIZE);
112
0
        break;
113
0
    case NET_IPV6:
  Branch (113:5): [True: 0, False: 0]
114
0
        assert(ipIn.m_addr.size() == ADDR_IPV6_SIZE);
115
0
        break;
116
0
    case NET_ONION:
  Branch (116:5): [True: 0, False: 0]
117
0
        assert(ipIn.m_addr.size() == ADDR_TORV3_SIZE);
118
0
        break;
119
0
    case NET_I2P:
  Branch (119:5): [True: 0, False: 0]
120
0
        assert(ipIn.m_addr.size() == ADDR_I2P_SIZE);
121
0
        break;
122
0
    case NET_CJDNS:
  Branch (122:5): [True: 0, False: 0]
123
0
        assert(ipIn.m_addr.size() == ADDR_CJDNS_SIZE);
124
0
        break;
125
0
    case NET_INTERNAL:
  Branch (125:5): [True: 0, False: 0]
126
0
        assert(ipIn.m_addr.size() == ADDR_INTERNAL_SIZE);
127
0
        break;
128
0
    case NET_UNROUTABLE:
  Branch (128:5): [True: 0, False: 0]
129
0
    case NET_MAX:
  Branch (129:5): [True: 0, False: 0]
130
0
        assert(false);
131
0
    } // no default case, so the compiler can warn about missing cases
132
133
0
    m_net = ipIn.m_net;
134
0
    m_addr = ipIn.m_addr;
135
0
}
136
137
void CNetAddr::SetLegacyIPv6(Span<const uint8_t> ipv6)
138
870
{
139
870
    assert(ipv6.size() == ADDR_IPV6_SIZE);
140
141
870
    size_t skip{0};
142
143
870
    if (HasPrefix(ipv6, IPV4_IN_IPV6_PREFIX)) {
  Branch (143:9): [True: 0, False: 870]
144
        // IPv4-in-IPv6
145
0
        m_net = NET_IPV4;
146
0
        skip = sizeof(IPV4_IN_IPV6_PREFIX);
147
870
    } else if (HasPrefix(ipv6, TORV2_IN_IPV6_PREFIX)) {
  Branch (147:16): [True: 0, False: 870]
148
        // TORv2-in-IPv6 (unsupported). Unserialize as !IsValid(), thus ignoring them.
149
        // Mimic a default-constructed CNetAddr object which is !IsValid() and thus
150
        // will not be gossiped, but continue reading next addresses from the stream.
151
0
        m_net = NET_IPV6;
152
0
        m_addr.assign(ADDR_IPV6_SIZE, 0x0);
153
0
        return;
154
870
    } else if (HasPrefix(ipv6, INTERNAL_IN_IPV6_PREFIX)) {
  Branch (154:16): [True: 0, False: 870]
155
        // Internal-in-IPv6
156
0
        m_net = NET_INTERNAL;
157
0
        skip = sizeof(INTERNAL_IN_IPV6_PREFIX);
158
870
    } else {
159
        // IPv6
160
870
        m_net = NET_IPV6;
161
870
    }
162
163
870
    m_addr.assign(ipv6.begin() + skip, ipv6.end());
164
870
}
165
166
/**
167
 * Create an "internal" address that represents a name or FQDN. AddrMan uses
168
 * these fake addresses to keep track of which DNS seeds were used.
169
 * @returns Whether or not the operation was successful.
170
 * @see NET_INTERNAL, INTERNAL_IN_IPV6_PREFIX, CNetAddr::IsInternal(), CNetAddr::IsRFC4193()
171
 */
172
bool CNetAddr::SetInternal(const std::string &name)
173
0
{
174
0
    if (name.empty()) {
  Branch (174:9): [True: 0, False: 0]
175
0
        return false;
176
0
    }
177
0
    m_net = NET_INTERNAL;
178
0
    unsigned char hash[32] = {};
179
0
    CSHA256().Write((const unsigned char*)name.data(), name.size()).Finalize(hash);
180
0
    m_addr.assign(hash, hash + ADDR_INTERNAL_SIZE);
181
0
    return true;
182
0
}
183
184
namespace torv3 {
185
// https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt?id=7116c9cdaba248aae07a3f1d0e15d9dd102f62c5#n2175
186
static constexpr size_t CHECKSUM_LEN = 2;
187
static const unsigned char VERSION[] = {3};
188
static constexpr size_t TOTAL_LEN = ADDR_TORV3_SIZE + CHECKSUM_LEN + sizeof(VERSION);
189
190
static void Checksum(Span<const uint8_t> addr_pubkey, uint8_t (&checksum)[CHECKSUM_LEN])
191
0
{
192
    // TORv3 CHECKSUM = H(".onion checksum" | PUBKEY | VERSION)[:2]
193
0
    static const unsigned char prefix[] = ".onion checksum";
194
0
    static constexpr size_t prefix_len = 15;
195
196
0
    SHA3_256 hasher;
197
198
0
    hasher.Write(Span{prefix}.first(prefix_len));
199
0
    hasher.Write(addr_pubkey);
200
0
    hasher.Write(VERSION);
201
202
0
    uint8_t checksum_full[SHA3_256::OUTPUT_SIZE];
203
204
0
    hasher.Finalize(checksum_full);
205
206
0
    memcpy(checksum, checksum_full, sizeof(checksum));
207
0
}
208
209
}; // namespace torv3
210
211
bool CNetAddr::SetSpecial(const std::string& addr)
212
0
{
213
0
    if (!ContainsNoNUL(addr)) {
  Branch (213:9): [True: 0, False: 0]
214
0
        return false;
215
0
    }
216
217
0
    if (SetTor(addr)) {
  Branch (217:9): [True: 0, False: 0]
218
0
        return true;
219
0
    }
220
221
0
    if (SetI2P(addr)) {
  Branch (221:9): [True: 0, False: 0]
222
0
        return true;
223
0
    }
224
225
0
    return false;
226
0
}
227
228
bool CNetAddr::SetTor(const std::string& addr)
229
0
{
230
0
    static const char* suffix{".onion"};
231
0
    static constexpr size_t suffix_len{6};
232
233
0
    if (addr.size() <= suffix_len || addr.substr(addr.size() - suffix_len) != suffix) {
  Branch (233:9): [True: 0, False: 0]
  Branch (233:9): [True: 0, False: 0]
  Branch (233:38): [True: 0, False: 0]
234
0
        return false;
235
0
    }
236
237
0
    auto input = DecodeBase32(std::string_view{addr}.substr(0, addr.size() - suffix_len));
238
239
0
    if (!input) {
  Branch (239:9): [True: 0, False: 0]
240
0
        return false;
241
0
    }
242
243
0
    if (input->size() == torv3::TOTAL_LEN) {
  Branch (243:9): [True: 0, False: 0]
244
0
        Span<const uint8_t> input_pubkey{input->data(), ADDR_TORV3_SIZE};
245
0
        Span<const uint8_t> input_checksum{input->data() + ADDR_TORV3_SIZE, torv3::CHECKSUM_LEN};
246
0
        Span<const uint8_t> input_version{input->data() + ADDR_TORV3_SIZE + torv3::CHECKSUM_LEN, sizeof(torv3::VERSION)};
247
248
0
        if (input_version != torv3::VERSION) {
  Branch (248:13): [True: 0, False: 0]
249
0
            return false;
250
0
        }
251
252
0
        uint8_t calculated_checksum[torv3::CHECKSUM_LEN];
253
0
        torv3::Checksum(input_pubkey, calculated_checksum);
254
255
0
        if (input_checksum != calculated_checksum) {
  Branch (255:13): [True: 0, False: 0]
256
0
            return false;
257
0
        }
258
259
0
        m_net = NET_ONION;
260
0
        m_addr.assign(input_pubkey.begin(), input_pubkey.end());
261
0
        return true;
262
0
    }
263
264
0
    return false;
265
0
}
266
267
bool CNetAddr::SetI2P(const std::string& addr)
268
0
{
269
    // I2P addresses that we support consist of 52 base32 characters + ".b32.i2p".
270
0
    static constexpr size_t b32_len{52};
271
0
    static const char* suffix{".b32.i2p"};
272
0
    static constexpr size_t suffix_len{8};
273
274
0
    if (addr.size() != b32_len + suffix_len || ToLower(addr.substr(b32_len)) != suffix) {
  Branch (274:9): [True: 0, False: 0]
  Branch (274:9): [True: 0, False: 0]
  Branch (274:48): [True: 0, False: 0]
275
0
        return false;
276
0
    }
277
278
    // Remove the ".b32.i2p" suffix and pad to a multiple of 8 chars, so DecodeBase32()
279
    // can decode it.
280
0
    const std::string b32_padded = addr.substr(0, b32_len) + "====";
281
282
0
    auto address_bytes = DecodeBase32(b32_padded);
283
284
0
    if (!address_bytes || address_bytes->size() != ADDR_I2P_SIZE) {
  Branch (284:9): [True: 0, False: 0]
  Branch (284:27): [True: 0, False: 0]
285
0
        return false;
286
0
    }
287
288
0
    m_net = NET_I2P;
289
0
    m_addr.assign(address_bytes->begin(), address_bytes->end());
290
291
0
    return true;
292
0
}
293
294
CNetAddr::CNetAddr(const struct in_addr& ipv4Addr)
295
0
{
296
0
    m_net = NET_IPV4;
297
0
    const uint8_t* ptr = reinterpret_cast<const uint8_t*>(&ipv4Addr);
298
0
    m_addr.assign(ptr, ptr + ADDR_IPV4_SIZE);
299
0
}
300
301
CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr, const uint32_t scope)
302
0
{
303
0
    SetLegacyIPv6({reinterpret_cast<const uint8_t*>(&ipv6Addr), sizeof(ipv6Addr)});
304
0
    m_scope_id = scope;
305
0
}
306
307
bool CNetAddr::IsBindAny() const
308
0
{
309
0
    if (!IsIPv4() && !IsIPv6()) {
  Branch (309:9): [True: 0, False: 0]
  Branch (309:22): [True: 0, False: 0]
310
0
        return false;
311
0
    }
312
0
    return std::all_of(m_addr.begin(), m_addr.end(), [](uint8_t b) { return b == 0; });
313
0
}
314
315
bool CNetAddr::IsRFC1918() const
316
0
{
317
0
    return IsIPv4() && (
  Branch (317:12): [True: 0, False: 0]
318
0
        m_addr[0] == 10 ||
  Branch (318:9): [True: 0, False: 0]
319
0
        (m_addr[0] == 192 && m_addr[1] == 168) ||
  Branch (319:10): [True: 0, False: 0]
  Branch (319:30): [True: 0, False: 0]
320
0
        (m_addr[0] == 172 && m_addr[1] >= 16 && m_addr[1] <= 31));
  Branch (320:10): [True: 0, False: 0]
  Branch (320:30): [True: 0, False: 0]
  Branch (320:49): [True: 0, False: 0]
321
0
}
322
323
bool CNetAddr::IsRFC2544() const
324
0
{
325
0
    return IsIPv4() && m_addr[0] == 198 && (m_addr[1] == 18 || m_addr[1] == 19);
  Branch (325:12): [True: 0, False: 0]
  Branch (325:24): [True: 0, False: 0]
  Branch (325:45): [True: 0, False: 0]
  Branch (325:64): [True: 0, False: 0]
326
0
}
327
328
bool CNetAddr::IsRFC3927() const
329
0
{
330
0
    return IsIPv4() && HasPrefix(m_addr, std::array<uint8_t, 2>{169, 254});
  Branch (330:12): [True: 0, False: 0]
  Branch (330:24): [True: 0, False: 0]
331
0
}
332
333
bool CNetAddr::IsRFC6598() const
334
0
{
335
0
    return IsIPv4() && m_addr[0] == 100 && m_addr[1] >= 64 && m_addr[1] <= 127;
  Branch (335:12): [True: 0, False: 0]
  Branch (335:24): [True: 0, False: 0]
  Branch (335:44): [True: 0, False: 0]
  Branch (335:63): [True: 0, False: 0]
336
0
}
337
338
bool CNetAddr::IsRFC5737() const
339
0
{
340
0
    return IsIPv4() && (HasPrefix(m_addr, std::array<uint8_t, 3>{192, 0, 2}) ||
  Branch (340:12): [True: 0, False: 0]
  Branch (340:25): [True: 0, False: 0]
341
0
                        HasPrefix(m_addr, std::array<uint8_t, 3>{198, 51, 100}) ||
  Branch (341:25): [True: 0, False: 0]
342
0
                        HasPrefix(m_addr, std::array<uint8_t, 3>{203, 0, 113}));
  Branch (342:25): [True: 0, False: 0]
343
0
}
344
345
bool CNetAddr::IsRFC3849() const
346
0
{
347
0
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x0D, 0xB8});
  Branch (347:12): [True: 0, False: 0]
  Branch (347:24): [True: 0, False: 0]
348
0
}
349
350
bool CNetAddr::IsRFC3964() const
351
0
{
352
0
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 2>{0x20, 0x02});
  Branch (352:12): [True: 0, False: 0]
  Branch (352:24): [True: 0, False: 0]
353
0
}
354
355
bool CNetAddr::IsRFC6052() const
356
0
{
357
0
    return IsIPv6() &&
  Branch (357:12): [True: 0, False: 0]
358
0
           HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x64, 0xFF, 0x9B, 0x00, 0x00,
  Branch (358:12): [True: 0, False: 0]
359
0
                                                     0x00, 0x00, 0x00, 0x00, 0x00, 0x00});
360
0
}
361
362
bool CNetAddr::IsRFC4380() const
363
0
{
364
0
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x00, 0x00});
  Branch (364:12): [True: 0, False: 0]
  Branch (364:24): [True: 0, False: 0]
365
0
}
366
367
bool CNetAddr::IsRFC4862() const
368
0
{
369
0
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 8>{0xFE, 0x80, 0x00, 0x00,
  Branch (369:12): [True: 0, False: 0]
  Branch (369:24): [True: 0, False: 0]
370
0
                                                                0x00, 0x00, 0x00, 0x00});
371
0
}
372
373
bool CNetAddr::IsRFC4193() const
374
0
{
375
0
    return IsIPv6() && (m_addr[0] & 0xFE) == 0xFC;
  Branch (375:12): [True: 0, False: 0]
  Branch (375:24): [True: 0, False: 0]
376
0
}
377
378
bool CNetAddr::IsRFC6145() const
379
0
{
380
0
    return IsIPv6() &&
  Branch (380:12): [True: 0, False: 0]
381
0
           HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  Branch (381:12): [True: 0, False: 0]
382
0
                                                     0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00});
383
0
}
384
385
bool CNetAddr::IsRFC4843() const
386
0
{
387
0
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
  Branch (387:12): [True: 0, False: 0]
  Branch (387:24): [True: 0, False: 0]
388
0
           (m_addr[3] & 0xF0) == 0x10;
  Branch (388:12): [True: 0, False: 0]
389
0
}
390
391
bool CNetAddr::IsRFC7343() const
392
0
{
393
0
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
  Branch (393:12): [True: 0, False: 0]
  Branch (393:24): [True: 0, False: 0]
394
0
           (m_addr[3] & 0xF0) == 0x20;
  Branch (394:12): [True: 0, False: 0]
395
0
}
396
397
bool CNetAddr::IsHeNet() const
398
0
{
399
0
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x04, 0x70});
  Branch (399:12): [True: 0, False: 0]
  Branch (399:24): [True: 0, False: 0]
400
0
}
401
402
bool CNetAddr::IsLocal() const
403
0
{
404
    // IPv4 loopback (127.0.0.0/8 or 0.0.0.0/8)
405
0
    if (IsIPv4() && (m_addr[0] == 127 || m_addr[0] == 0)) {
  Branch (405:9): [True: 0, False: 0]
  Branch (405:22): [True: 0, False: 0]
  Branch (405:42): [True: 0, False: 0]
406
0
        return true;
407
0
    }
408
409
    // IPv6 loopback (::1/128)
410
0
    static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
411
0
    if (IsIPv6() && memcmp(m_addr.data(), pchLocal, sizeof(pchLocal)) == 0) {
  Branch (411:9): [True: 0, False: 0]
  Branch (411:21): [True: 0, False: 0]
412
0
        return true;
413
0
    }
414
415
0
    return false;
416
0
}
417
418
/**
419
 * @returns Whether or not this network address is a valid address that @a could
420
 *          be used to refer to an actual host.
421
 *
422
 * @note A valid address may or may not be publicly routable on the global
423
 *       internet. As in, the set of valid addresses is a superset of the set of
424
 *       publicly routable addresses.
425
 *
426
 * @see CNetAddr::IsRoutable()
427
 */
428
bool CNetAddr::IsValid() const
429
3.77k
{
430
    // unspecified IPv6 address (::/128)
431
3.77k
    unsigned char ipNone6[16] = {};
432
3.77k
    if (IsIPv6() && memcmp(m_addr.data(), ipNone6, sizeof(ipNone6)) == 0) {
  Branch (432:9): [True: 3.77k, False: 0]
  Branch (432:21): [True: 3.77k, False: 0]
433
3.77k
        return false;
434
3.77k
    }
435
436
0
    if (IsCJDNS() && !HasCJDNSPrefix()) {
  Branch (436:9): [True: 0, False: 0]
  Branch (436:22): [True: 0, False: 0]
437
0
        return false;
438
0
    }
439
440
    // documentation IPv6 address
441
0
    if (IsRFC3849())
  Branch (441:9): [True: 0, False: 0]
442
0
        return false;
443
444
0
    if (IsInternal())
  Branch (444:9): [True: 0, False: 0]
445
0
        return false;
446
447
0
    if (IsIPv4()) {
  Branch (447:9): [True: 0, False: 0]
448
0
        const uint32_t addr = ReadBE32(m_addr.data());
449
0
        if (addr == INADDR_ANY || addr == INADDR_NONE) {
  Branch (449:13): [True: 0, False: 0]
  Branch (449:35): [True: 0, False: 0]
450
0
            return false;
451
0
        }
452
0
    }
453
454
0
    return true;
455
0
}
456
457
/**
458
 * @returns Whether or not this network address is publicly routable on the
459
 *          global internet.
460
 *
461
 * @note A routable address is always valid. As in, the set of routable addresses
462
 *       is a subset of the set of valid addresses.
463
 *
464
 * @see CNetAddr::IsValid()
465
 */
466
bool CNetAddr::IsRoutable() const
467
2.90k
{
468
2.90k
    return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || IsRFC4193() || IsRFC4843() || IsRFC7343() || IsLocal() || IsInternal());
  Branch (468:12): [True: 0, False: 2.90k]
  Branch (468:27): [True: 0, False: 0]
  Branch (468:42): [True: 0, False: 0]
  Branch (468:57): [True: 0, False: 0]
  Branch (468:72): [True: 0, False: 0]
  Branch (468:87): [True: 0, False: 0]
  Branch (468:102): [True: 0, False: 0]
  Branch (468:117): [True: 0, False: 0]
  Branch (468:132): [True: 0, False: 0]
  Branch (468:147): [True: 0, False: 0]
  Branch (468:162): [True: 0, False: 0]
  Branch (468:175): [True: 0, False: 0]
469
2.90k
}
470
471
/**
472
 * @returns Whether or not this is a dummy address that represents a name.
473
 *
474
 * @see CNetAddr::SetInternal(const std::string &)
475
 */
476
bool CNetAddr::IsInternal() const
477
2.61k
{
478
2.61k
   return m_net == NET_INTERNAL;
479
2.61k
}
480
481
bool CNetAddr::IsAddrV1Compatible() const
482
0
{
483
0
    switch (m_net) {
  Branch (483:13): [True: 0, False: 0]
484
0
    case NET_IPV4:
  Branch (484:5): [True: 0, False: 0]
485
0
    case NET_IPV6:
  Branch (485:5): [True: 0, False: 0]
486
0
    case NET_INTERNAL:
  Branch (486:5): [True: 0, False: 0]
487
0
        return true;
488
0
    case NET_ONION:
  Branch (488:5): [True: 0, False: 0]
489
0
    case NET_I2P:
  Branch (489:5): [True: 0, False: 0]
490
0
    case NET_CJDNS:
  Branch (490:5): [True: 0, False: 0]
491
0
        return false;
492
0
    case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
  Branch (492:5): [True: 0, False: 0]
493
0
    case NET_MAX:        // m_net is never and should not be set to NET_MAX
  Branch (493:5): [True: 0, False: 0]
494
0
        assert(false);
495
0
    } // no default case, so the compiler can warn about missing cases
496
497
0
    assert(false);
498
0
}
499
500
enum Network CNetAddr::GetNetwork() const
501
290
{
502
290
    if (IsInternal())
  Branch (502:9): [True: 0, False: 290]
503
0
        return NET_INTERNAL;
504
505
290
    if (!IsRoutable())
  Branch (505:9): [True: 290, False: 0]
506
290
        return NET_UNROUTABLE;
507
508
0
    return m_net;
509
290
}
510
511
static std::string IPv4ToString(Span<const uint8_t> a)
512
0
{
513
0
    return strprintf("%u.%u.%u.%u", a[0], a[1], a[2], a[3]);
514
0
}
515
516
// Return an IPv6 address text representation with zero compression as described in RFC 5952
517
// ("A Recommendation for IPv6 Address Text Representation").
518
static std::string IPv6ToString(Span<const uint8_t> a, uint32_t scope_id)
519
870
{
520
870
    assert(a.size() == ADDR_IPV6_SIZE);
521
870
    const std::array groups{
522
870
        ReadBE16(&a[0]),
523
870
        ReadBE16(&a[2]),
524
870
        ReadBE16(&a[4]),
525
870
        ReadBE16(&a[6]),
526
870
        ReadBE16(&a[8]),
527
870
        ReadBE16(&a[10]),
528
870
        ReadBE16(&a[12]),
529
870
        ReadBE16(&a[14]),
530
870
    };
531
532
    // The zero compression implementation is inspired by Rust's std::net::Ipv6Addr, see
533
    // https://github.com/rust-lang/rust/blob/cc4103089f40a163f6d143f06359cba7043da29b/library/std/src/net/ip.rs#L1635-L1683
534
870
    struct ZeroSpan {
535
870
        size_t start_index{0};
536
870
        size_t len{0};
537
870
    };
538
539
    // Find longest sequence of consecutive all-zero fields. Use first zero sequence if two or more
540
    // zero sequences of equal length are found.
541
870
    ZeroSpan longest, current;
542
7.83k
    for (size_t i{0}; i < groups.size(); ++i) {
  Branch (542:23): [True: 6.96k, False: 870]
543
6.96k
        if (groups[i] != 0) {
  Branch (543:13): [True: 0, False: 6.96k]
544
0
            current = {i + 1, 0};
545
0
            continue;
546
0
        }
547
6.96k
        current.len += 1;
548
6.96k
        if (current.len > longest.len) {
  Branch (548:13): [True: 6.96k, False: 0]
549
6.96k
            longest = current;
550
6.96k
        }
551
6.96k
    }
552
553
870
    std::string r;
554
870
    r.reserve(39);
555
7.83k
    for (size_t i{0}; i < groups.size(); ++i) {
  Branch (555:23): [True: 6.96k, False: 870]
556
        // Replace the longest sequence of consecutive all-zero fields with two colons ("::").
557
6.96k
        if (longest.len >= 2 && i >= longest.start_index && i < longest.start_index + longest.len) {
  Branch (557:13): [True: 6.96k, False: 0]
  Branch (557:33): [True: 6.96k, False: 0]
  Branch (557:61): [True: 6.96k, False: 0]
558
6.96k
            if (i == longest.start_index) {
  Branch (558:17): [True: 870, False: 6.09k]
559
870
                r += "::";
560
870
            }
561
6.96k
            continue;
562
6.96k
        }
563
0
        r += strprintf("%s%x", ((!r.empty() && r.back() != ':') ? ":" : ""), groups[i]);
  Branch (563:34): [True: 0, False: 0]
  Branch (563:48): [True: 0, False: 0]
564
0
    }
565
566
870
    if (scope_id != 0) {
  Branch (566:9): [True: 0, False: 870]
567
0
        r += strprintf("%%%u", scope_id);
568
0
    }
569
570
870
    return r;
571
870
}
572
573
std::string OnionToString(Span<const uint8_t> addr)
574
0
{
575
0
    uint8_t checksum[torv3::CHECKSUM_LEN];
576
0
    torv3::Checksum(addr, checksum);
577
    // TORv3 onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion"
578
0
    prevector<torv3::TOTAL_LEN, uint8_t> address{addr.begin(), addr.end()};
579
0
    address.insert(address.end(), checksum, checksum + torv3::CHECKSUM_LEN);
580
0
    address.insert(address.end(), torv3::VERSION, torv3::VERSION + sizeof(torv3::VERSION));
581
0
    return EncodeBase32(address) + ".onion";
582
0
}
583
584
std::string CNetAddr::ToStringAddr() const
585
870
{
586
870
    switch (m_net) {
  Branch (586:13): [True: 0, False: 870]
587
0
    case NET_IPV4:
  Branch (587:5): [True: 0, False: 870]
588
0
        return IPv4ToString(m_addr);
589
870
    case NET_IPV6:
  Branch (589:5): [True: 870, False: 0]
590
870
        return IPv6ToString(m_addr, m_scope_id);
591
0
    case NET_ONION:
  Branch (591:5): [True: 0, False: 870]
592
0
        return OnionToString(m_addr);
593
0
    case NET_I2P:
  Branch (593:5): [True: 0, False: 870]
594
0
        return EncodeBase32(m_addr, false /* don't pad with = */) + ".b32.i2p";
595
0
    case NET_CJDNS:
  Branch (595:5): [True: 0, False: 870]
596
0
        return IPv6ToString(m_addr, 0);
597
0
    case NET_INTERNAL:
  Branch (597:5): [True: 0, False: 870]
598
0
        return EncodeBase32(m_addr) + ".internal";
599
0
    case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
  Branch (599:5): [True: 0, False: 870]
600
0
    case NET_MAX:        // m_net is never and should not be set to NET_MAX
  Branch (600:5): [True: 0, False: 870]
601
0
        assert(false);
602
870
    } // no default case, so the compiler can warn about missing cases
603
604
0
    assert(false);
605
0
}
606
607
bool operator==(const CNetAddr& a, const CNetAddr& b)
608
0
{
609
0
    return a.m_net == b.m_net && a.m_addr == b.m_addr;
  Branch (609:12): [True: 0, False: 0]
  Branch (609:34): [True: 0, False: 0]
610
0
}
611
612
bool operator<(const CNetAddr& a, const CNetAddr& b)
613
0
{
614
0
    return std::tie(a.m_net, a.m_addr) < std::tie(b.m_net, b.m_addr);
615
0
}
616
617
/**
618
 * Try to get our IPv4 address.
619
 *
620
 * @param[out] pipv4Addr The in_addr struct to which to copy.
621
 *
622
 * @returns Whether or not the operation was successful, in particular, whether
623
 *          or not our address was an IPv4 address.
624
 *
625
 * @see CNetAddr::IsIPv4()
626
 */
627
bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const
628
0
{
629
0
    if (!IsIPv4())
  Branch (629:9): [True: 0, False: 0]
630
0
        return false;
631
0
    assert(sizeof(*pipv4Addr) == m_addr.size());
632
0
    memcpy(pipv4Addr, m_addr.data(), m_addr.size());
633
0
    return true;
634
0
}
635
636
/**
637
 * Try to get our IPv6 (or CJDNS) address.
638
 *
639
 * @param[out] pipv6Addr The in6_addr struct to which to copy.
640
 *
641
 * @returns Whether or not the operation was successful, in particular, whether
642
 *          or not our address was an IPv6 address.
643
 *
644
 * @see CNetAddr::IsIPv6()
645
 */
646
bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
647
0
{
648
0
    if (!IsIPv6() && !IsCJDNS()) {
  Branch (648:9): [True: 0, False: 0]
  Branch (648:22): [True: 0, False: 0]
649
0
        return false;
650
0
    }
651
0
    assert(sizeof(*pipv6Addr) == m_addr.size());
652
0
    memcpy(pipv6Addr, m_addr.data(), m_addr.size());
653
0
    return true;
654
0
}
655
656
bool CNetAddr::HasLinkedIPv4() const
657
0
{
658
0
    return IsRoutable() && (IsIPv4() || IsRFC6145() || IsRFC6052() || IsRFC3964() || IsRFC4380());
  Branch (658:12): [True: 0, False: 0]
  Branch (658:29): [True: 0, False: 0]
  Branch (658:41): [True: 0, False: 0]
  Branch (658:56): [True: 0, False: 0]
  Branch (658:71): [True: 0, False: 0]
  Branch (658:86): [True: 0, False: 0]
659
0
}
660
661
uint32_t CNetAddr::GetLinkedIPv4() const
662
0
{
663
0
    if (IsIPv4()) {
  Branch (663:9): [True: 0, False: 0]
664
0
        return ReadBE32(m_addr.data());
665
0
    } else if (IsRFC6052() || IsRFC6145()) {
  Branch (665:16): [True: 0, False: 0]
  Branch (665:31): [True: 0, False: 0]
666
        // mapped IPv4, SIIT translated IPv4: the IPv4 address is the last 4 bytes of the address
667
0
        return ReadBE32(Span{m_addr}.last(ADDR_IPV4_SIZE).data());
668
0
    } else if (IsRFC3964()) {
  Branch (668:16): [True: 0, False: 0]
669
        // 6to4 tunneled IPv4: the IPv4 address is in bytes 2-6
670
0
        return ReadBE32(Span{m_addr}.subspan(2, ADDR_IPV4_SIZE).data());
671
0
    } else if (IsRFC4380()) {
  Branch (671:16): [True: 0, False: 0]
672
        // Teredo tunneled IPv4: the IPv4 address is in the last 4 bytes of the address, but bitflipped
673
0
        return ~ReadBE32(Span{m_addr}.last(ADDR_IPV4_SIZE).data());
674
0
    }
675
0
    assert(false);
676
0
}
677
678
Network CNetAddr::GetNetClass() const
679
1.45k
{
680
    // Make sure that if we return NET_IPV6, then IsIPv6() is true. The callers expect that.
681
682
    // Check for "internal" first because such addresses are also !IsRoutable()
683
    // and we don't want to return NET_UNROUTABLE in that case.
684
1.45k
    if (IsInternal()) {
  Branch (684:9): [True: 0, False: 1.45k]
685
0
        return NET_INTERNAL;
686
0
    }
687
1.45k
    if (!IsRoutable()) {
  Branch (687:9): [True: 1.45k, False: 0]
688
1.45k
        return NET_UNROUTABLE;
689
1.45k
    }
690
0
    if (HasLinkedIPv4()) {
  Branch (690:9): [True: 0, False: 0]
691
0
        return NET_IPV4;
692
0
    }
693
0
    return m_net;
694
0
}
695
696
std::vector<unsigned char> CNetAddr::GetAddrBytes() const
697
0
{
698
0
    if (IsAddrV1Compatible()) {
  Branch (698:9): [True: 0, False: 0]
699
0
        uint8_t serialized[V1_SERIALIZATION_SIZE];
700
0
        SerializeV1Array(serialized);
701
0
        return {std::begin(serialized), std::end(serialized)};
702
0
    }
703
0
    return std::vector<unsigned char>(m_addr.begin(), m_addr.end());
704
0
}
705
706
// private extensions to enum Network, only returned by GetExtNetwork,
707
// and only used in GetReachabilityFrom
708
static const int NET_TEREDO = NET_MAX;
709
int static GetExtNetwork(const CNetAddr& addr)
710
0
{
711
0
    if (addr.IsRFC4380())
  Branch (711:9): [True: 0, False: 0]
712
0
        return NET_TEREDO;
713
0
    return addr.GetNetwork();
714
0
}
715
716
/** Calculates a metric for how reachable (*this) is from a given partner */
717
int CNetAddr::GetReachabilityFrom(const CNetAddr& paddrPartner) const
718
0
{
719
0
    enum Reachability {
720
0
        REACH_UNREACHABLE,
721
0
        REACH_DEFAULT,
722
0
        REACH_TEREDO,
723
0
        REACH_IPV6_WEAK,
724
0
        REACH_IPV4,
725
0
        REACH_IPV6_STRONG,
726
0
        REACH_PRIVATE
727
0
    };
728
729
0
    if (!IsRoutable() || IsInternal())
  Branch (729:9): [True: 0, False: 0]
  Branch (729:26): [True: 0, False: 0]
730
0
        return REACH_UNREACHABLE;
731
732
0
    int ourNet = GetExtNetwork(*this);
733
0
    int theirNet = GetExtNetwork(paddrPartner);
734
0
    bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();
  Branch (734:20): [True: 0, False: 0]
  Branch (734:35): [True: 0, False: 0]
  Branch (734:50): [True: 0, False: 0]
735
736
0
    switch(theirNet) {
737
0
    case NET_IPV4:
  Branch (737:5): [True: 0, False: 0]
738
0
        switch(ourNet) {
739
0
        default:       return REACH_DEFAULT;
  Branch (739:9): [True: 0, False: 0]
740
0
        case NET_IPV4: return REACH_IPV4;
  Branch (740:9): [True: 0, False: 0]
741
0
        }
742
0
    case NET_IPV6:
  Branch (742:5): [True: 0, False: 0]
743
0
        switch(ourNet) {
744
0
        default:         return REACH_DEFAULT;
  Branch (744:9): [True: 0, False: 0]
745
0
        case NET_TEREDO: return REACH_TEREDO;
  Branch (745:9): [True: 0, False: 0]
746
0
        case NET_IPV4:   return REACH_IPV4;
  Branch (746:9): [True: 0, False: 0]
747
0
        case NET_IPV6:   return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled
  Branch (747:9): [True: 0, False: 0]
  Branch (747:33): [True: 0, False: 0]
748
0
        }
749
0
    case NET_ONION:
  Branch (749:5): [True: 0, False: 0]
750
0
        switch(ourNet) {
751
0
        default:         return REACH_DEFAULT;
  Branch (751:9): [True: 0, False: 0]
752
0
        case NET_IPV4:   return REACH_IPV4; // Tor users can connect to IPv4 as well
  Branch (752:9): [True: 0, False: 0]
753
0
        case NET_ONION:    return REACH_PRIVATE;
  Branch (753:9): [True: 0, False: 0]
754
0
        }
755
0
    case NET_I2P:
  Branch (755:5): [True: 0, False: 0]
756
0
        switch (ourNet) {
757
0
        case NET_I2P: return REACH_PRIVATE;
  Branch (757:9): [True: 0, False: 0]
758
0
        default: return REACH_DEFAULT;
  Branch (758:9): [True: 0, False: 0]
759
0
        }
760
0
    case NET_CJDNS:
  Branch (760:5): [True: 0, False: 0]
761
0
        switch (ourNet) {
762
0
        case NET_CJDNS: return REACH_PRIVATE;
  Branch (762:9): [True: 0, False: 0]
763
0
        default: return REACH_DEFAULT;
  Branch (763:9): [True: 0, False: 0]
764
0
        }
765
0
    case NET_TEREDO:
  Branch (765:5): [True: 0, False: 0]
766
0
        switch(ourNet) {
767
0
        default:          return REACH_DEFAULT;
  Branch (767:9): [True: 0, False: 0]
768
0
        case NET_TEREDO:  return REACH_TEREDO;
  Branch (768:9): [True: 0, False: 0]
769
0
        case NET_IPV6:    return REACH_IPV6_WEAK;
  Branch (769:9): [True: 0, False: 0]
770
0
        case NET_IPV4:    return REACH_IPV4;
  Branch (770:9): [True: 0, False: 0]
771
0
        }
772
0
    case NET_UNROUTABLE:
  Branch (772:5): [True: 0, False: 0]
773
0
    default:
  Branch (773:5): [True: 0, False: 0]
774
0
        switch(ourNet) {
775
0
        default:          return REACH_DEFAULT;
  Branch (775:9): [True: 0, False: 0]
776
0
        case NET_TEREDO:  return REACH_TEREDO;
  Branch (776:9): [True: 0, False: 0]
777
0
        case NET_IPV6:    return REACH_IPV6_WEAK;
  Branch (777:9): [True: 0, False: 0]
778
0
        case NET_IPV4:    return REACH_IPV4;
  Branch (778:9): [True: 0, False: 0]
779
0
        case NET_ONION:     return REACH_PRIVATE; // either from Tor, or don't care about our address
  Branch (779:9): [True: 0, False: 0]
780
0
        }
781
0
    }
782
0
}
783
784
6.09k
CService::CService() : port(0)
785
6.09k
{
786
6.09k
}
787
788
0
CService::CService(const CNetAddr& cip, uint16_t portIn) : CNetAddr(cip), port(portIn)
789
0
{
790
0
}
791
792
0
CService::CService(const struct in_addr& ipv4Addr, uint16_t portIn) : CNetAddr(ipv4Addr), port(portIn)
793
0
{
794
0
}
795
796
0
CService::CService(const struct in6_addr& ipv6Addr, uint16_t portIn) : CNetAddr(ipv6Addr), port(portIn)
797
0
{
798
0
}
799
800
0
CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port))
801
0
{
802
0
    assert(addr.sin_family == AF_INET);
803
0
}
804
805
0
CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr, addr.sin6_scope_id), port(ntohs(addr.sin6_port))
806
0
{
807
0
   assert(addr.sin6_family == AF_INET6);
808
0
}
809
810
bool CService::SetSockAddr(const struct sockaddr *paddr)
811
0
{
812
0
    switch (paddr->sa_family) {
813
0
    case AF_INET:
  Branch (813:5): [True: 0, False: 0]
814
0
        *this = CService(*(const struct sockaddr_in*)paddr);
815
0
        return true;
816
0
    case AF_INET6:
  Branch (816:5): [True: 0, False: 0]
817
0
        *this = CService(*(const struct sockaddr_in6*)paddr);
818
0
        return true;
819
0
    default:
  Branch (819:5): [True: 0, False: 0]
820
0
        return false;
821
0
    }
822
0
}
823
824
sa_family_t CService::GetSAFamily() const
825
0
{
826
0
    switch (m_net) {
827
0
    case NET_IPV4:
  Branch (827:5): [True: 0, False: 0]
828
0
        return AF_INET;
829
0
    case NET_IPV6:
  Branch (829:5): [True: 0, False: 0]
830
0
    case NET_CJDNS:
  Branch (830:5): [True: 0, False: 0]
831
0
        return AF_INET6;
832
0
    default:
  Branch (832:5): [True: 0, False: 0]
833
0
        return AF_UNSPEC;
834
0
    }
835
0
}
836
837
uint16_t CService::GetPort() const
838
0
{
839
0
    return port;
840
0
}
841
842
bool operator==(const CService& a, const CService& b)
843
0
{
844
0
    return static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port == b.port;
  Branch (844:12): [True: 0, False: 0]
  Branch (844:68): [True: 0, False: 0]
845
0
}
846
847
bool operator<(const CService& a, const CService& b)
848
0
{
849
0
    return static_cast<CNetAddr>(a) < static_cast<CNetAddr>(b) || (static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port < b.port);
  Branch (849:12): [True: 0, False: 0]
  Branch (849:68): [True: 0, False: 0]
  Branch (849:124): [True: 0, False: 0]
850
0
}
851
852
/**
853
 * Obtain the IPv4/6 socket address this represents.
854
 *
855
 * @param[out] paddr The obtained socket address.
856
 * @param[in,out] addrlen The size, in bytes, of the address structure pointed
857
 *                        to by paddr. The value that's pointed to by this
858
 *                        parameter might change after calling this function if
859
 *                        the size of the corresponding address structure
860
 *                        changed.
861
 *
862
 * @returns Whether or not the operation was successful.
863
 */
864
bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const
865
0
{
866
0
    if (IsIPv4()) {
  Branch (866:9): [True: 0, False: 0]
867
0
        if (*addrlen < (socklen_t)sizeof(struct sockaddr_in))
  Branch (867:13): [True: 0, False: 0]
868
0
            return false;
869
0
        *addrlen = sizeof(struct sockaddr_in);
870
0
        struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr;
871
0
        memset(paddrin, 0, *addrlen);
872
0
        if (!GetInAddr(&paddrin->sin_addr))
  Branch (872:13): [True: 0, False: 0]
873
0
            return false;
874
0
        paddrin->sin_family = AF_INET;
875
0
        paddrin->sin_port = htons(port);
876
0
        return true;
877
0
    }
878
0
    if (IsIPv6() || IsCJDNS()) {
  Branch (878:9): [True: 0, False: 0]
  Branch (878:21): [True: 0, False: 0]
879
0
        if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6))
  Branch (879:13): [True: 0, False: 0]
880
0
            return false;
881
0
        *addrlen = sizeof(struct sockaddr_in6);
882
0
        struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr;
883
0
        memset(paddrin6, 0, *addrlen);
884
0
        if (!GetIn6Addr(&paddrin6->sin6_addr))
  Branch (884:13): [True: 0, False: 0]
885
0
            return false;
886
0
        paddrin6->sin6_scope_id = m_scope_id;
887
0
        paddrin6->sin6_family = AF_INET6;
888
0
        paddrin6->sin6_port = htons(port);
889
0
        return true;
890
0
    }
891
0
    return false;
892
0
}
893
894
/**
895
 * @returns An identifier unique to this service's address and port number.
896
 */
897
std::vector<unsigned char> CService::GetKey() const
898
0
{
899
0
    auto key = GetAddrBytes();
900
0
    key.push_back(port / 0x100); // most significant byte of our port
901
0
    key.push_back(port & 0x0FF); // least significant byte of our port
902
0
    return key;
903
0
}
904
905
std::string CService::ToStringAddrPort() const
906
870
{
907
870
    const auto port_str = strprintf("%u", port);
908
909
870
    if (IsIPv4() || IsTor() || IsI2P() || IsInternal()) {
  Branch (909:9): [True: 0, False: 870]
  Branch (909:21): [True: 0, False: 870]
  Branch (909:32): [True: 0, False: 870]
  Branch (909:43): [True: 0, False: 870]
910
0
        return ToStringAddr() + ":" + port_str;
911
870
    } else {
912
870
        return "[" + ToStringAddr() + "]:" + port_str;
913
870
    }
914
870
}
915
916
CSubNet::CSubNet():
917
0
    valid(false)
918
0
{
919
0
    memset(netmask, 0, sizeof(netmask));
920
0
}
921
922
0
CSubNet::CSubNet(const CNetAddr& addr, uint8_t mask) : CSubNet()
923
0
{
924
0
    valid = (addr.IsIPv4() && mask <= ADDR_IPV4_SIZE * 8) ||
  Branch (924:14): [True: 0, False: 0]
  Branch (924:31): [True: 0, False: 0]
925
0
            (addr.IsIPv6() && mask <= ADDR_IPV6_SIZE * 8);
  Branch (925:14): [True: 0, False: 0]
  Branch (925:31): [True: 0, False: 0]
926
0
    if (!valid) {
  Branch (926:9): [True: 0, False: 0]
927
0
        return;
928
0
    }
929
930
0
    assert(mask <= sizeof(netmask) * 8);
931
932
0
    network = addr;
933
934
0
    uint8_t n = mask;
935
0
    for (size_t i = 0; i < network.m_addr.size(); ++i) {
  Branch (935:24): [True: 0, False: 0]
936
0
        const uint8_t bits = n < 8 ? n : 8;
  Branch (936:30): [True: 0, False: 0]
937
0
        netmask[i] = (uint8_t)((uint8_t)0xFF << (8 - bits)); // Set first bits.
938
0
        network.m_addr[i] &= netmask[i]; // Normalize network according to netmask.
939
0
        n -= bits;
940
0
    }
941
0
}
942
943
/**
944
 * @returns The number of 1-bits in the prefix of the specified subnet mask. If
945
 *          the specified subnet mask is not a valid one, -1.
946
 */
947
static inline int NetmaskBits(uint8_t x)
948
0
{
949
0
    switch(x) {
950
0
    case 0x00: return 0;
  Branch (950:5): [True: 0, False: 0]
951
0
    case 0x80: return 1;
  Branch (951:5): [True: 0, False: 0]
952
0
    case 0xc0: return 2;
  Branch (952:5): [True: 0, False: 0]
953
0
    case 0xe0: return 3;
  Branch (953:5): [True: 0, False: 0]
954
0
    case 0xf0: return 4;
  Branch (954:5): [True: 0, False: 0]
955
0
    case 0xf8: return 5;
  Branch (955:5): [True: 0, False: 0]
956
0
    case 0xfc: return 6;
  Branch (956:5): [True: 0, False: 0]
957
0
    case 0xfe: return 7;
  Branch (957:5): [True: 0, False: 0]
958
0
    case 0xff: return 8;
  Branch (958:5): [True: 0, False: 0]
959
0
    default: return -1;
  Branch (959:5): [True: 0, False: 0]
960
0
    }
961
0
}
962
963
0
CSubNet::CSubNet(const CNetAddr& addr, const CNetAddr& mask) : CSubNet()
964
0
{
965
0
    valid = (addr.IsIPv4() || addr.IsIPv6()) && addr.m_net == mask.m_net;
  Branch (965:14): [True: 0, False: 0]
  Branch (965:31): [True: 0, False: 0]
  Branch (965:49): [True: 0, False: 0]
966
0
    if (!valid) {
  Branch (966:9): [True: 0, False: 0]
967
0
        return;
968
0
    }
969
    // Check if `mask` contains 1-bits after 0-bits (which is an invalid netmask).
970
0
    bool zeros_found = false;
971
0
    for (auto b : mask.m_addr) {
  Branch (971:17): [True: 0, False: 0]
972
0
        const int num_bits = NetmaskBits(b);
973
0
        if (num_bits == -1 || (zeros_found && num_bits != 0)) {
  Branch (973:13): [True: 0, False: 0]
  Branch (973:32): [True: 0, False: 0]
  Branch (973:47): [True: 0, False: 0]
974
0
            valid = false;
975
0
            return;
976
0
        }
977
0
        if (num_bits < 8) {
  Branch (977:13): [True: 0, False: 0]
978
0
            zeros_found = true;
979
0
        }
980
0
    }
981
982
0
    assert(mask.m_addr.size() <= sizeof(netmask));
983
984
0
    memcpy(netmask, mask.m_addr.data(), mask.m_addr.size());
985
986
0
    network = addr;
987
988
    // Normalize network according to netmask
989
0
    for (size_t x = 0; x < network.m_addr.size(); ++x) {
  Branch (989:24): [True: 0, False: 0]
990
0
        network.m_addr[x] &= netmask[x];
991
0
    }
992
0
}
993
994
0
CSubNet::CSubNet(const CNetAddr& addr) : CSubNet()
995
0
{
996
0
    switch (addr.m_net) {
  Branch (996:13): [True: 0, False: 0]
997
0
    case NET_IPV4:
  Branch (997:5): [True: 0, False: 0]
998
0
    case NET_IPV6:
  Branch (998:5): [True: 0, False: 0]
999
0
        valid = true;
1000
0
        assert(addr.m_addr.size() <= sizeof(netmask));
1001
0
        memset(netmask, 0xFF, addr.m_addr.size());
1002
0
        break;
1003
0
    case NET_ONION:
  Branch (1003:5): [True: 0, False: 0]
1004
0
    case NET_I2P:
  Branch (1004:5): [True: 0, False: 0]
1005
0
    case NET_CJDNS:
  Branch (1005:5): [True: 0, False: 0]
1006
0
        valid = true;
1007
0
        break;
1008
0
    case NET_INTERNAL:
  Branch (1008:5): [True: 0, False: 0]
1009
0
    case NET_UNROUTABLE:
  Branch (1009:5): [True: 0, False: 0]
1010
0
    case NET_MAX:
  Branch (1010:5): [True: 0, False: 0]
1011
0
        return;
1012
0
    }
1013
1014
0
    network = addr;
1015
0
}
1016
1017
/**
1018
 * @returns True if this subnet is valid, the specified address is valid, and
1019
 *          the specified address belongs in this subnet.
1020
 */
1021
bool CSubNet::Match(const CNetAddr &addr) const
1022
0
{
1023
0
    if (!valid || !addr.IsValid() || network.m_net != addr.m_net)
  Branch (1023:9): [True: 0, False: 0]
  Branch (1023:19): [True: 0, False: 0]
  Branch (1023:38): [True: 0, False: 0]
1024
0
        return false;
1025
1026
0
    switch (network.m_net) {
  Branch (1026:13): [True: 0, False: 0]
1027
0
    case NET_IPV4:
  Branch (1027:5): [True: 0, False: 0]
1028
0
    case NET_IPV6:
  Branch (1028:5): [True: 0, False: 0]
1029
0
        break;
1030
0
    case NET_ONION:
  Branch (1030:5): [True: 0, False: 0]
1031
0
    case NET_I2P:
  Branch (1031:5): [True: 0, False: 0]
1032
0
    case NET_CJDNS:
  Branch (1032:5): [True: 0, False: 0]
1033
0
    case NET_INTERNAL:
  Branch (1033:5): [True: 0, False: 0]
1034
0
        return addr == network;
1035
0
    case NET_UNROUTABLE:
  Branch (1035:5): [True: 0, False: 0]
1036
0
    case NET_MAX:
  Branch (1036:5): [True: 0, False: 0]
1037
0
        return false;
1038
0
    }
1039
1040
0
    assert(network.m_addr.size() == addr.m_addr.size());
1041
0
    for (size_t x = 0; x < addr.m_addr.size(); ++x) {
  Branch (1041:24): [True: 0, False: 0]
1042
0
        if ((addr.m_addr[x] & netmask[x]) != network.m_addr[x]) {
  Branch (1042:13): [True: 0, False: 0]
1043
0
            return false;
1044
0
        }
1045
0
    }
1046
0
    return true;
1047
0
}
1048
1049
std::string CSubNet::ToString() const
1050
0
{
1051
0
    std::string suffix;
1052
1053
0
    switch (network.m_net) {
  Branch (1053:13): [True: 0, False: 0]
1054
0
    case NET_IPV4:
  Branch (1054:5): [True: 0, False: 0]
1055
0
    case NET_IPV6: {
  Branch (1055:5): [True: 0, False: 0]
1056
0
        assert(network.m_addr.size() <= sizeof(netmask));
1057
1058
0
        uint8_t cidr = 0;
1059
1060
0
        for (size_t i = 0; i < network.m_addr.size(); ++i) {
  Branch (1060:28): [True: 0, False: 0]
1061
0
            if (netmask[i] == 0x00) {
  Branch (1061:17): [True: 0, False: 0]
1062
0
                break;
1063
0
            }
1064
0
            cidr += NetmaskBits(netmask[i]);
1065
0
        }
1066
1067
0
        suffix = strprintf("/%u", cidr);
1068
0
        break;
1069
0
    }
1070
0
    case NET_ONION:
  Branch (1070:5): [True: 0, False: 0]
1071
0
    case NET_I2P:
  Branch (1071:5): [True: 0, False: 0]
1072
0
    case NET_CJDNS:
  Branch (1072:5): [True: 0, False: 0]
1073
0
    case NET_INTERNAL:
  Branch (1073:5): [True: 0, False: 0]
1074
0
    case NET_UNROUTABLE:
  Branch (1074:5): [True: 0, False: 0]
1075
0
    case NET_MAX:
  Branch (1075:5): [True: 0, False: 0]
1076
0
        break;
1077
0
    }
1078
1079
0
    return network.ToStringAddr() + suffix;
1080
0
}
1081
1082
bool CSubNet::IsValid() const
1083
0
{
1084
0
    return valid;
1085
0
}
1086
1087
bool operator==(const CSubNet& a, const CSubNet& b)
1088
0
{
1089
0
    return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16);
  Branch (1089:12): [True: 0, False: 0]
  Branch (1089:34): [True: 0, False: 0]
  Branch (1089:60): [True: 0, False: 0]
1090
0
}
1091
1092
bool operator<(const CSubNet& a, const CSubNet& b)
1093
0
{
1094
0
    return (a.network < b.network || (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0));
  Branch (1094:13): [True: 0, False: 0]
  Branch (1094:39): [True: 0, False: 0]
  Branch (1094:65): [True: 0, False: 0]
1095
0
}