Coverage Report

Created: 2024-08-21 05:08

/workdir/bitcoin/src/txmempool.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-2022 The Bitcoin Core developers
3
// Distributed under the MIT software license, see the accompanying
4
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6
#include <txmempool.h>
7
8
#include <chain.h>
9
#include <coins.h>
10
#include <common/system.h>
11
#include <consensus/consensus.h>
12
#include <consensus/tx_verify.h>
13
#include <consensus/validation.h>
14
#include <logging.h>
15
#include <policy/policy.h>
16
#include <policy/settings.h>
17
#include <random.h>
18
#include <tinyformat.h>
19
#include <util/check.h>
20
#include <util/feefrac.h>
21
#include <util/moneystr.h>
22
#include <util/overflow.h>
23
#include <util/result.h>
24
#include <util/time.h>
25
#include <util/trace.h>
26
#include <util/translation.h>
27
#include <validationinterface.h>
28
29
#include <algorithm>
30
#include <cmath>
31
#include <numeric>
32
#include <optional>
33
#include <ranges>
34
#include <string_view>
35
#include <utility>
36
37
bool TestLockPointValidity(CChain& active_chain, const LockPoints& lp)
38
0
{
39
0
    AssertLockHeld(cs_main);
40
    // If there are relative lock times then the maxInputBlock will be set
41
    // If there are no relative lock times, the LockPoints don't depend on the chain
42
0
    if (lp.maxInputBlock) {
  Branch (42:9): [True: 0, False: 0]
43
        // Check whether active_chain is an extension of the block at which the LockPoints
44
        // calculation was valid.  If not LockPoints are no longer valid
45
0
        if (!active_chain.Contains(lp.maxInputBlock)) {
  Branch (45:13): [True: 0, False: 0]
46
0
            return false;
47
0
        }
48
0
    }
49
50
    // LockPoints still valid
51
0
    return true;
52
0
}
53
54
void CTxMemPool::UpdateForDescendants(txiter updateIt, cacheMap& cachedDescendants,
55
                                      const std::set<uint256>& setExclude, std::set<uint256>& descendants_to_remove)
56
0
{
57
0
    CTxMemPoolEntry::Children stageEntries, descendants;
58
0
    stageEntries = updateIt->GetMemPoolChildrenConst();
59
60
0
    while (!stageEntries.empty()) {
  Branch (60:12): [True: 0, False: 0]
61
0
        const CTxMemPoolEntry& descendant = *stageEntries.begin();
62
0
        descendants.insert(descendant);
63
0
        stageEntries.erase(descendant);
64
0
        const CTxMemPoolEntry::Children& children = descendant.GetMemPoolChildrenConst();
65
0
        for (const CTxMemPoolEntry& childEntry : children) {
  Branch (65:48): [True: 0, False: 0]
66
0
            cacheMap::iterator cacheIt = cachedDescendants.find(mapTx.iterator_to(childEntry));
67
0
            if (cacheIt != cachedDescendants.end()) {
  Branch (67:17): [True: 0, False: 0]
68
                // We've already calculated this one, just add the entries for this set
69
                // but don't traverse again.
70
0
                for (txiter cacheEntry : cacheIt->second) {
  Branch (70:40): [True: 0, False: 0]
71
0
                    descendants.insert(*cacheEntry);
72
0
                }
73
0
            } else if (!descendants.count(childEntry)) {
  Branch (73:24): [True: 0, False: 0]
74
                // Schedule for later processing
75
0
                stageEntries.insert(childEntry);
76
0
            }
77
0
        }
78
0
    }
79
    // descendants now contains all in-mempool descendants of updateIt.
80
    // Update and add to cached descendant map
81
0
    int32_t modifySize = 0;
82
0
    CAmount modifyFee = 0;
83
0
    int64_t modifyCount = 0;
84
0
    for (const CTxMemPoolEntry& descendant : descendants) {
  Branch (84:44): [True: 0, False: 0]
85
0
        if (!setExclude.count(descendant.GetTx().GetHash())) {
  Branch (85:13): [True: 0, False: 0]
86
0
            modifySize += descendant.GetTxSize();
87
0
            modifyFee += descendant.GetModifiedFee();
88
0
            modifyCount++;
89
0
            cachedDescendants[updateIt].insert(mapTx.iterator_to(descendant));
90
            // Update ancestor state for each descendant
91
0
            mapTx.modify(mapTx.iterator_to(descendant), [=](CTxMemPoolEntry& e) {
92
0
              e.UpdateAncestorState(updateIt->GetTxSize(), updateIt->GetModifiedFee(), 1, updateIt->GetSigOpCost());
93
0
            });
94
            // Don't directly remove the transaction here -- doing so would
95
            // invalidate iterators in cachedDescendants. Mark it for removal
96
            // by inserting into descendants_to_remove.
97
0
            if (descendant.GetCountWithAncestors() > uint64_t(m_opts.limits.ancestor_count) || descendant.GetSizeWithAncestors() > m_opts.limits.ancestor_size_vbytes) {
  Branch (97:17): [True: 0, False: 0]
  Branch (97:96): [True: 0, False: 0]
98
0
                descendants_to_remove.insert(descendant.GetTx().GetHash());
99
0
            }
100
0
        }
101
0
    }
102
0
    mapTx.modify(updateIt, [=](CTxMemPoolEntry& e) { e.UpdateDescendantState(modifySize, modifyFee, modifyCount); });
103
0
}
104
105
void CTxMemPool::UpdateTransactionsFromBlock(const std::vector<uint256>& vHashesToUpdate)
106
0
{
107
0
    AssertLockHeld(cs);
108
    // For each entry in vHashesToUpdate, store the set of in-mempool, but not
109
    // in-vHashesToUpdate transactions, so that we don't have to recalculate
110
    // descendants when we come across a previously seen entry.
111
0
    cacheMap mapMemPoolDescendantsToUpdate;
112
113
    // Use a set for lookups into vHashesToUpdate (these entries are already
114
    // accounted for in the state of their ancestors)
115
0
    std::set<uint256> setAlreadyIncluded(vHashesToUpdate.begin(), vHashesToUpdate.end());
116
117
0
    std::set<uint256> descendants_to_remove;
118
119
    // Iterate in reverse, so that whenever we are looking at a transaction
120
    // we are sure that all in-mempool descendants have already been processed.
121
    // This maximizes the benefit of the descendant cache and guarantees that
122
    // CTxMemPoolEntry::m_children will be updated, an assumption made in
123
    // UpdateForDescendants.
124
0
    for (const uint256& hash : vHashesToUpdate | std::views::reverse) {
  Branch (124:30): [True: 0, False: 0]
125
        // calculate children from mapNextTx
126
0
        txiter it = mapTx.find(hash);
127
0
        if (it == mapTx.end()) {
  Branch (127:13): [True: 0, False: 0]
128
0
            continue;
129
0
        }
130
0
        auto iter = mapNextTx.lower_bound(COutPoint(Txid::FromUint256(hash), 0));
131
        // First calculate the children, and update CTxMemPoolEntry::m_children to
132
        // include them, and update their CTxMemPoolEntry::m_parents to include this tx.
133
        // we cache the in-mempool children to avoid duplicate updates
134
0
        {
135
0
            WITH_FRESH_EPOCH(m_epoch);
136
0
            for (; iter != mapNextTx.end() && iter->first->hash == hash; ++iter) {
  Branch (136:20): [True: 0, False: 0]
  Branch (136:20): [True: 0, False: 0]
  Branch (136:47): [True: 0, False: 0]
137
0
                const uint256 &childHash = iter->second->GetHash();
138
0
                txiter childIter = mapTx.find(childHash);
139
0
                assert(childIter != mapTx.end());
140
                // We can skip updating entries we've encountered before or that
141
                // are in the block (which are already accounted for).
142
0
                if (!visited(childIter) && !setAlreadyIncluded.count(childHash)) {
  Branch (142:21): [True: 0, False: 0]
  Branch (142:44): [True: 0, False: 0]
143
0
                    UpdateChild(it, childIter, true);
144
0
                    UpdateParent(childIter, it, true);
145
0
                }
146
0
            }
147
0
        } // release epoch guard for UpdateForDescendants
148
0
        UpdateForDescendants(it, mapMemPoolDescendantsToUpdate, setAlreadyIncluded, descendants_to_remove);
149
0
    }
150
151
0
    for (const auto& txid : descendants_to_remove) {
  Branch (151:27): [True: 0, False: 0]
152
        // This txid may have been removed already in a prior call to removeRecursive.
153
        // Therefore we ensure it is not yet removed already.
154
0
        if (const std::optional<txiter> txiter = GetIter(txid)) {
  Branch (154:41): [True: 0, False: 0]
155
0
            removeRecursive((*txiter)->GetTx(), MemPoolRemovalReason::SIZELIMIT);
156
0
        }
157
0
    }
158
0
}
159
160
util::Result<CTxMemPool::setEntries> CTxMemPool::CalculateAncestorsAndCheckLimits(
161
    int64_t entry_size,
162
    size_t entry_count,
163
    CTxMemPoolEntry::Parents& staged_ancestors,
164
    const Limits& limits) const
165
0
{
166
0
    int64_t totalSizeWithAncestors = entry_size;
167
0
    setEntries ancestors;
168
169
0
    while (!staged_ancestors.empty()) {
  Branch (169:12): [True: 0, False: 0]
170
0
        const CTxMemPoolEntry& stage = staged_ancestors.begin()->get();
171
0
        txiter stageit = mapTx.iterator_to(stage);
172
173
0
        ancestors.insert(stageit);
174
0
        staged_ancestors.erase(stage);
175
0
        totalSizeWithAncestors += stageit->GetTxSize();
176
177
0
        if (stageit->GetSizeWithDescendants() + entry_size > limits.descendant_size_vbytes) {
  Branch (177:13): [True: 0, False: 0]
178
0
            return util::Error{Untranslated(strprintf("exceeds descendant size limit for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limits.descendant_size_vbytes))};
179
0
        } else if (stageit->GetCountWithDescendants() + entry_count > static_cast<uint64_t>(limits.descendant_count)) {
  Branch (179:20): [True: 0, False: 0]
180
0
            return util::Error{Untranslated(strprintf("too many descendants for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limits.descendant_count))};
181
0
        } else if (totalSizeWithAncestors > limits.ancestor_size_vbytes) {
  Branch (181:20): [True: 0, False: 0]
182
0
            return util::Error{Untranslated(strprintf("exceeds ancestor size limit [limit: %u]", limits.ancestor_size_vbytes))};
183
0
        }
184
185
0
        const CTxMemPoolEntry::Parents& parents = stageit->GetMemPoolParentsConst();
186
0
        for (const CTxMemPoolEntry& parent : parents) {
  Branch (186:44): [True: 0, False: 0]
187
0
            txiter parent_it = mapTx.iterator_to(parent);
188
189
            // If this is a new ancestor, add it.
190
0
            if (ancestors.count(parent_it) == 0) {
  Branch (190:17): [True: 0, False: 0]
191
0
                staged_ancestors.insert(parent);
192
0
            }
193
0
            if (staged_ancestors.size() + ancestors.size() + entry_count > static_cast<uint64_t>(limits.ancestor_count)) {
  Branch (193:17): [True: 0, False: 0]
194
0
                return util::Error{Untranslated(strprintf("too many unconfirmed ancestors [limit: %u]", limits.ancestor_count))};
195
0
            }
196
0
        }
197
0
    }
198
199
0
    return ancestors;
200
0
}
201
202
util::Result<void> CTxMemPool::CheckPackageLimits(const Package& package,
203
                                                  const int64_t total_vsize) const
204
0
{
205
0
    size_t pack_count = package.size();
206
207
    // Package itself is busting mempool limits; should be rejected even if no staged_ancestors exist
208
0
    if (pack_count > static_cast<uint64_t>(m_opts.limits.ancestor_count)) {
  Branch (208:9): [True: 0, False: 0]
209
0
        return util::Error{Untranslated(strprintf("package count %u exceeds ancestor count limit [limit: %u]", pack_count, m_opts.limits.ancestor_count))};
210
0
    } else if (pack_count > static_cast<uint64_t>(m_opts.limits.descendant_count)) {
  Branch (210:16): [True: 0, False: 0]
211
0
        return util::Error{Untranslated(strprintf("package count %u exceeds descendant count limit [limit: %u]", pack_count, m_opts.limits.descendant_count))};
212
0
    } else if (total_vsize > m_opts.limits.ancestor_size_vbytes) {
  Branch (212:16): [True: 0, False: 0]
213
0
        return util::Error{Untranslated(strprintf("package size %u exceeds ancestor size limit [limit: %u]", total_vsize, m_opts.limits.ancestor_size_vbytes))};
214
0
    } else if (total_vsize > m_opts.limits.descendant_size_vbytes) {
  Branch (214:16): [True: 0, False: 0]
215
0
        return util::Error{Untranslated(strprintf("package size %u exceeds descendant size limit [limit: %u]", total_vsize, m_opts.limits.descendant_size_vbytes))};
216
0
    }
217
218
0
    CTxMemPoolEntry::Parents staged_ancestors;
219
0
    for (const auto& tx : package) {
  Branch (219:25): [True: 0, False: 0]
220
0
        for (const auto& input : tx->vin) {
  Branch (220:32): [True: 0, False: 0]
221
0
            std::optional<txiter> piter = GetIter(input.prevout.hash);
222
0
            if (piter) {
  Branch (222:17): [True: 0, False: 0]
223
0
                staged_ancestors.insert(**piter);
224
0
                if (staged_ancestors.size() + package.size() > static_cast<uint64_t>(m_opts.limits.ancestor_count)) {
  Branch (224:21): [True: 0, False: 0]
225
0
                    return util::Error{Untranslated(strprintf("too many unconfirmed parents [limit: %u]", m_opts.limits.ancestor_count))};
226
0
                }
227
0
            }
228
0
        }
229
0
    }
230
    // When multiple transactions are passed in, the ancestors and descendants of all transactions
231
    // considered together must be within limits even if they are not interdependent. This may be
232
    // stricter than the limits for each individual transaction.
233
0
    const auto ancestors{CalculateAncestorsAndCheckLimits(total_vsize, package.size(),
234
0
                                                          staged_ancestors, m_opts.limits)};
235
    // It's possible to overestimate the ancestor/descendant totals.
236
0
    if (!ancestors.has_value()) return util::Error{Untranslated("possibly " + util::ErrorString(ancestors).original)};
  Branch (236:9): [True: 0, False: 0]
237
0
    return {};
238
0
}
239
240
util::Result<CTxMemPool::setEntries> CTxMemPool::CalculateMemPoolAncestors(
241
    const CTxMemPoolEntry &entry,
242
    const Limits& limits,
243
    bool fSearchForParents /* = true */) const
244
0
{
245
0
    CTxMemPoolEntry::Parents staged_ancestors;
246
0
    const CTransaction &tx = entry.GetTx();
247
248
0
    if (fSearchForParents) {
  Branch (248:9): [True: 0, False: 0]
249
        // Get parents of this transaction that are in the mempool
250
        // GetMemPoolParents() is only valid for entries in the mempool, so we
251
        // iterate mapTx to find parents.
252
0
        for (unsigned int i = 0; i < tx.vin.size(); i++) {
  Branch (252:34): [True: 0, False: 0]
253
0
            std::optional<txiter> piter = GetIter(tx.vin[i].prevout.hash);
254
0
            if (piter) {
  Branch (254:17): [True: 0, False: 0]
255
0
                staged_ancestors.insert(**piter);
256
0
                if (staged_ancestors.size() + 1 > static_cast<uint64_t>(limits.ancestor_count)) {
  Branch (256:21): [True: 0, False: 0]
257
0
                    return util::Error{Untranslated(strprintf("too many unconfirmed parents [limit: %u]", limits.ancestor_count))};
258
0
                }
259
0
            }
260
0
        }
261
0
    } else {
262
        // If we're not searching for parents, we require this to already be an
263
        // entry in the mempool and use the entry's cached parents.
264
0
        txiter it = mapTx.iterator_to(entry);
265
0
        staged_ancestors = it->GetMemPoolParentsConst();
266
0
    }
267
268
0
    return CalculateAncestorsAndCheckLimits(entry.GetTxSize(), /*entry_count=*/1, staged_ancestors,
269
0
                                            limits);
270
0
}
271
272
CTxMemPool::setEntries CTxMemPool::AssumeCalculateMemPoolAncestors(
273
    std::string_view calling_fn_name,
274
    const CTxMemPoolEntry &entry,
275
    const Limits& limits,
276
    bool fSearchForParents /* = true */) const
277
0
{
278
0
    auto result{CalculateMemPoolAncestors(entry, limits, fSearchForParents)};
279
0
    if (!Assume(result)) {
  Branch (279:9): [True: 0, False: 0]
280
0
        LogPrintLevel(BCLog::MEMPOOL, BCLog::Level::Error, "%s: CalculateMemPoolAncestors failed unexpectedly, continuing with empty ancestor set (%s)\n",
281
0
                      calling_fn_name, util::ErrorString(result).original);
282
0
    }
283
0
    return std::move(result).value_or(CTxMemPool::setEntries{});
284
0
}
285
286
void CTxMemPool::UpdateAncestorsOf(bool add, txiter it, setEntries &setAncestors)
287
0
{
288
0
    const CTxMemPoolEntry::Parents& parents = it->GetMemPoolParentsConst();
289
    // add or remove this tx as a child of each parent
290
0
    for (const CTxMemPoolEntry& parent : parents) {
  Branch (290:40): [True: 0, False: 0]
291
0
        UpdateChild(mapTx.iterator_to(parent), it, add);
292
0
    }
293
0
    const int32_t updateCount = (add ? 1 : -1);
  Branch (293:34): [True: 0, False: 0]
294
0
    const int32_t updateSize{updateCount * it->GetTxSize()};
295
0
    const CAmount updateFee = updateCount * it->GetModifiedFee();
296
0
    for (txiter ancestorIt : setAncestors) {
  Branch (296:28): [True: 0, False: 0]
297
0
        mapTx.modify(ancestorIt, [=](CTxMemPoolEntry& e) { e.UpdateDescendantState(updateSize, updateFee, updateCount); });
298
0
    }
299
0
}
300
301
void CTxMemPool::UpdateEntryForAncestors(txiter it, const setEntries &setAncestors)
302
0
{
303
0
    int64_t updateCount = setAncestors.size();
304
0
    int64_t updateSize = 0;
305
0
    CAmount updateFee = 0;
306
0
    int64_t updateSigOpsCost = 0;
307
0
    for (txiter ancestorIt : setAncestors) {
  Branch (307:28): [True: 0, False: 0]
308
0
        updateSize += ancestorIt->GetTxSize();
309
0
        updateFee += ancestorIt->GetModifiedFee();
310
0
        updateSigOpsCost += ancestorIt->GetSigOpCost();
311
0
    }
312
0
    mapTx.modify(it, [=](CTxMemPoolEntry& e){ e.UpdateAncestorState(updateSize, updateFee, updateCount, updateSigOpsCost); });
313
0
}
314
315
void CTxMemPool::UpdateChildrenForRemoval(txiter it)
316
0
{
317
0
    const CTxMemPoolEntry::Children& children = it->GetMemPoolChildrenConst();
318
0
    for (const CTxMemPoolEntry& updateIt : children) {
  Branch (318:42): [True: 0, False: 0]
319
0
        UpdateParent(mapTx.iterator_to(updateIt), it, false);
320
0
    }
321
0
}
322
323
void CTxMemPool::UpdateForRemoveFromMempool(const setEntries &entriesToRemove, bool updateDescendants)
324
0
{
325
    // For each entry, walk back all ancestors and decrement size associated with this
326
    // transaction
327
0
    if (updateDescendants) {
  Branch (327:9): [True: 0, False: 0]
328
        // updateDescendants should be true whenever we're not recursively
329
        // removing a tx and all its descendants, eg when a transaction is
330
        // confirmed in a block.
331
        // Here we only update statistics and not data in CTxMemPool::Parents
332
        // and CTxMemPoolEntry::Children (which we need to preserve until we're
333
        // finished with all operations that need to traverse the mempool).
334
0
        for (txiter removeIt : entriesToRemove) {
  Branch (334:30): [True: 0, False: 0]
335
0
            setEntries setDescendants;
336
0
            CalculateDescendants(removeIt, setDescendants);
337
0
            setDescendants.erase(removeIt); // don't update state for self
338
0
            int32_t modifySize = -removeIt->GetTxSize();
339
0
            CAmount modifyFee = -removeIt->GetModifiedFee();
340
0
            int modifySigOps = -removeIt->GetSigOpCost();
341
0
            for (txiter dit : setDescendants) {
  Branch (341:29): [True: 0, False: 0]
342
0
                mapTx.modify(dit, [=](CTxMemPoolEntry& e){ e.UpdateAncestorState(modifySize, modifyFee, -1, modifySigOps); });
343
0
            }
344
0
        }
345
0
    }
346
0
    for (txiter removeIt : entriesToRemove) {
  Branch (346:26): [True: 0, False: 0]
347
0
        const CTxMemPoolEntry &entry = *removeIt;
348
        // Since this is a tx that is already in the mempool, we can call CMPA
349
        // with fSearchForParents = false.  If the mempool is in a consistent
350
        // state, then using true or false should both be correct, though false
351
        // should be a bit faster.
352
        // However, if we happen to be in the middle of processing a reorg, then
353
        // the mempool can be in an inconsistent state.  In this case, the set
354
        // of ancestors reachable via GetMemPoolParents()/GetMemPoolChildren()
355
        // will be the same as the set of ancestors whose packages include this
356
        // transaction, because when we add a new transaction to the mempool in
357
        // addUnchecked(), we assume it has no children, and in the case of a
358
        // reorg where that assumption is false, the in-mempool children aren't
359
        // linked to the in-block tx's until UpdateTransactionsFromBlock() is
360
        // called.
361
        // So if we're being called during a reorg, ie before
362
        // UpdateTransactionsFromBlock() has been called, then
363
        // GetMemPoolParents()/GetMemPoolChildren() will differ from the set of
364
        // mempool parents we'd calculate by searching, and it's important that
365
        // we use the cached notion of ancestor transactions as the set of
366
        // things to update for removal.
367
0
        auto ancestors{AssumeCalculateMemPoolAncestors(__func__, entry, Limits::NoLimits(), /*fSearchForParents=*/false)};
368
        // Note that UpdateAncestorsOf severs the child links that point to
369
        // removeIt in the entries for the parents of removeIt.
370
0
        UpdateAncestorsOf(false, removeIt, ancestors);
371
0
    }
372
    // After updating all the ancestor sizes, we can now sever the link between each
373
    // transaction being removed and any mempool children (ie, update CTxMemPoolEntry::m_parents
374
    // for each direct child of a transaction being removed).
375
0
    for (txiter removeIt : entriesToRemove) {
  Branch (375:26): [True: 0, False: 0]
376
0
        UpdateChildrenForRemoval(removeIt);
377
0
    }
378
0
}
379
380
void CTxMemPoolEntry::UpdateDescendantState(int32_t modifySize, CAmount modifyFee, int64_t modifyCount)
381
0
{
382
0
    nSizeWithDescendants += modifySize;
383
0
    assert(nSizeWithDescendants > 0);
384
0
    nModFeesWithDescendants = SaturatingAdd(nModFeesWithDescendants, modifyFee);
385
0
    m_count_with_descendants += modifyCount;
386
0
    assert(m_count_with_descendants > 0);
387
0
}
388
389
void CTxMemPoolEntry::UpdateAncestorState(int32_t modifySize, CAmount modifyFee, int64_t modifyCount, int64_t modifySigOps)
390
0
{
391
0
    nSizeWithAncestors += modifySize;
392
0
    assert(nSizeWithAncestors > 0);
393
0
    nModFeesWithAncestors = SaturatingAdd(nModFeesWithAncestors, modifyFee);
394
0
    m_count_with_ancestors += modifyCount;
395
0
    assert(m_count_with_ancestors > 0);
396
0
    nSigOpCostWithAncestors += modifySigOps;
397
0
    assert(int(nSigOpCostWithAncestors) >= 0);
398
0
}
399
400
//! Clamp option values and populate the error if options are not valid.
401
static CTxMemPool::Options&& Flatten(CTxMemPool::Options&& opts, bilingual_str& error)
402
0
{
403
0
    opts.check_ratio = std::clamp<int>(opts.check_ratio, 0, 1'000'000);
404
0
    int64_t descendant_limit_bytes = opts.limits.descendant_size_vbytes * 40;
405
0
    if (opts.max_size_bytes < 0 || opts.max_size_bytes < descendant_limit_bytes) {
  Branch (405:9): [True: 0, False: 0]
  Branch (405:36): [True: 0, False: 0]
406
0
        error = strprintf(_("-maxmempool must be at least %d MB"), std::ceil(descendant_limit_bytes / 1'000'000.0));
407
0
    }
408
0
    return std::move(opts);
409
0
}
410
411
CTxMemPool::CTxMemPool(Options opts, bilingual_str& error)
412
0
    : m_opts{Flatten(std::move(opts), error)}
413
0
{
414
0
}
415
416
bool CTxMemPool::isSpent(const COutPoint& outpoint) const
417
0
{
418
0
    LOCK(cs);
419
0
    return mapNextTx.count(outpoint);
420
0
}
421
422
unsigned int CTxMemPool::GetTransactionsUpdated() const
423
0
{
424
0
    return nTransactionsUpdated;
425
0
}
426
427
void CTxMemPool::AddTransactionsUpdated(unsigned int n)
428
0
{
429
0
    nTransactionsUpdated += n;
430
0
}
431
432
void CTxMemPool::addUnchecked(const CTxMemPoolEntry &entry, setEntries &setAncestors)
433
0
{
434
    // Add to memory pool without checking anything.
435
    // Used by AcceptToMemoryPool(), which DOES do
436
    // all the appropriate checks.
437
0
    indexed_transaction_set::iterator newit = mapTx.emplace(CTxMemPoolEntry::ExplicitCopy, entry).first;
438
439
    // Update transaction for any feeDelta created by PrioritiseTransaction
440
0
    CAmount delta{0};
441
0
    ApplyDelta(entry.GetTx().GetHash(), delta);
442
    // The following call to UpdateModifiedFee assumes no previous fee modifications
443
0
    Assume(entry.GetFee() == entry.GetModifiedFee());
444
0
    if (delta) {
  Branch (444:9): [True: 0, False: 0]
445
0
        mapTx.modify(newit, [&delta](CTxMemPoolEntry& e) { e.UpdateModifiedFee(delta); });
446
0
    }
447
448
    // Update cachedInnerUsage to include contained transaction's usage.
449
    // (When we update the entry for in-mempool parents, memory usage will be
450
    // further updated.)
451
0
    cachedInnerUsage += entry.DynamicMemoryUsage();
452
453
0
    const CTransaction& tx = newit->GetTx();
454
0
    std::set<Txid> setParentTransactions;
455
0
    for (unsigned int i = 0; i < tx.vin.size(); i++) {
  Branch (455:30): [True: 0, False: 0]
456
0
        mapNextTx.insert(std::make_pair(&tx.vin[i].prevout, &tx));
457
0
        setParentTransactions.insert(tx.vin[i].prevout.hash);
458
0
    }
459
    // Don't bother worrying about child transactions of this one.
460
    // Normal case of a new transaction arriving is that there can't be any
461
    // children, because such children would be orphans.
462
    // An exception to that is if a transaction enters that used to be in a block.
463
    // In that case, our disconnect block logic will call UpdateTransactionsFromBlock
464
    // to clean up the mess we're leaving here.
465
466
    // Update ancestors with information about this tx
467
0
    for (const auto& pit : GetIterSet(setParentTransactions)) {
  Branch (467:26): [True: 0, False: 0]
468
0
            UpdateParent(newit, pit, true);
469
0
    }
470
0
    UpdateAncestorsOf(true, newit, setAncestors);
471
0
    UpdateEntryForAncestors(newit, setAncestors);
472
473
0
    nTransactionsUpdated++;
474
0
    totalTxSize += entry.GetTxSize();
475
0
    m_total_fee += entry.GetFee();
476
477
0
    txns_randomized.emplace_back(newit->GetSharedTx());
478
0
    newit->idx_randomized = txns_randomized.size() - 1;
479
480
0
    TRACE3(mempool, added,
481
0
        entry.GetTx().GetHash().data(),
482
0
        entry.GetTxSize(),
483
0
        entry.GetFee()
484
0
    );
485
0
}
486
487
void CTxMemPool::removeUnchecked(txiter it, MemPoolRemovalReason reason)
488
0
{
489
    // We increment mempool sequence value no matter removal reason
490
    // even if not directly reported below.
491
0
    uint64_t mempool_sequence = GetAndIncrementSequence();
492
493
0
    if (reason != MemPoolRemovalReason::BLOCK && m_opts.signals) {
  Branch (493:9): [True: 0, False: 0]
  Branch (493:50): [True: 0, False: 0]
494
        // Notify clients that a transaction has been removed from the mempool
495
        // for any reason except being included in a block. Clients interested
496
        // in transactions included in blocks can subscribe to the BlockConnected
497
        // notification.
498
0
        m_opts.signals->TransactionRemovedFromMempool(it->GetSharedTx(), reason, mempool_sequence);
499
0
    }
500
0
    TRACE5(mempool, removed,
501
0
        it->GetTx().GetHash().data(),
502
0
        RemovalReasonToString(reason).c_str(),
503
0
        it->GetTxSize(),
504
0
        it->GetFee(),
505
0
        std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(it->GetTime()).count()
506
0
    );
507
508
0
    for (const CTxIn& txin : it->GetTx().vin)
  Branch (508:28): [True: 0, False: 0]
509
0
        mapNextTx.erase(txin.prevout);
510
511
0
    RemoveUnbroadcastTx(it->GetTx().GetHash(), true /* add logging because unchecked */);
512
513
0
    if (txns_randomized.size() > 1) {
  Branch (513:9): [True: 0, False: 0]
514
        // Update idx_randomized of the to-be-moved entry.
515
0
        Assert(GetEntry(txns_randomized.back()->GetHash()))->idx_randomized = it->idx_randomized;
516
        // Remove entry from txns_randomized by replacing it with the back and deleting the back.
517
0
        txns_randomized[it->idx_randomized] = std::move(txns_randomized.back());
518
0
        txns_randomized.pop_back();
519
0
        if (txns_randomized.size() * 2 < txns_randomized.capacity())
  Branch (519:13): [True: 0, False: 0]
520
0
            txns_randomized.shrink_to_fit();
521
0
    } else
522
0
        txns_randomized.clear();
523
524
0
    totalTxSize -= it->GetTxSize();
525
0
    m_total_fee -= it->GetFee();
526
0
    cachedInnerUsage -= it->DynamicMemoryUsage();
527
0
    cachedInnerUsage -= memusage::DynamicUsage(it->GetMemPoolParentsConst()) + memusage::DynamicUsage(it->GetMemPoolChildrenConst());
528
0
    mapTx.erase(it);
529
0
    nTransactionsUpdated++;
530
0
}
531
532
// Calculates descendants of entry that are not already in setDescendants, and adds to
533
// setDescendants. Assumes entryit is already a tx in the mempool and CTxMemPoolEntry::m_children
534
// is correct for tx and all descendants.
535
// Also assumes that if an entry is in setDescendants already, then all
536
// in-mempool descendants of it are already in setDescendants as well, so that we
537
// can save time by not iterating over those entries.
538
void CTxMemPool::CalculateDescendants(txiter entryit, setEntries& setDescendants) const
539
0
{
540
0
    setEntries stage;
541
0
    if (setDescendants.count(entryit) == 0) {
  Branch (541:9): [True: 0, False: 0]
542
0
        stage.insert(entryit);
543
0
    }
544
    // Traverse down the children of entry, only adding children that are not
545
    // accounted for in setDescendants already (because those children have either
546
    // already been walked, or will be walked in this iteration).
547
0
    while (!stage.empty()) {
  Branch (547:12): [True: 0, False: 0]
548
0
        txiter it = *stage.begin();
549
0
        setDescendants.insert(it);
550
0
        stage.erase(it);
551
552
0
        const CTxMemPoolEntry::Children& children = it->GetMemPoolChildrenConst();
553
0
        for (const CTxMemPoolEntry& child : children) {
  Branch (553:43): [True: 0, False: 0]
554
0
            txiter childiter = mapTx.iterator_to(child);
555
0
            if (!setDescendants.count(childiter)) {
  Branch (555:17): [True: 0, False: 0]
556
0
                stage.insert(childiter);
557
0
            }
558
0
        }
559
0
    }
560
0
}
561
562
void CTxMemPool::removeRecursive(const CTransaction &origTx, MemPoolRemovalReason reason)
563
0
{
564
    // Remove transaction from memory pool
565
0
    AssertLockHeld(cs);
566
0
        setEntries txToRemove;
567
0
        txiter origit = mapTx.find(origTx.GetHash());
568
0
        if (origit != mapTx.end()) {
  Branch (568:13): [True: 0, False: 0]
569
0
            txToRemove.insert(origit);
570
0
        } else {
571
            // When recursively removing but origTx isn't in the mempool
572
            // be sure to remove any children that are in the pool. This can
573
            // happen during chain re-orgs if origTx isn't re-accepted into
574
            // the mempool for any reason.
575
0
            for (unsigned int i = 0; i < origTx.vout.size(); i++) {
  Branch (575:38): [True: 0, False: 0]
576
0
                auto it = mapNextTx.find(COutPoint(origTx.GetHash(), i));
577
0
                if (it == mapNextTx.end())
  Branch (577:21): [True: 0, False: 0]
578
0
                    continue;
579
0
                txiter nextit = mapTx.find(it->second->GetHash());
580
0
                assert(nextit != mapTx.end());
581
0
                txToRemove.insert(nextit);
582
0
            }
583
0
        }
584
0
        setEntries setAllRemoves;
585
0
        for (txiter it : txToRemove) {
  Branch (585:24): [True: 0, False: 0]
586
0
            CalculateDescendants(it, setAllRemoves);
587
0
        }
588
589
0
        RemoveStaged(setAllRemoves, false, reason);
590
0
}
591
592
void CTxMemPool::removeForReorg(CChain& chain, std::function<bool(txiter)> check_final_and_mature)
593
0
{
594
    // Remove transactions spending a coinbase which are now immature and no-longer-final transactions
595
0
    AssertLockHeld(cs);
596
0
    AssertLockHeld(::cs_main);
597
598
0
    setEntries txToRemove;
599
0
    for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
  Branch (599:70): [True: 0, False: 0]
600
0
        if (check_final_and_mature(it)) txToRemove.insert(it);
  Branch (600:13): [True: 0, False: 0]
601
0
    }
602
0
    setEntries setAllRemoves;
603
0
    for (txiter it : txToRemove) {
  Branch (603:20): [True: 0, False: 0]
604
0
        CalculateDescendants(it, setAllRemoves);
605
0
    }
606
0
    RemoveStaged(setAllRemoves, false, MemPoolRemovalReason::REORG);
607
0
    for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
  Branch (607:70): [True: 0, False: 0]
608
0
        assert(TestLockPointValidity(chain, it->GetLockPoints()));
609
0
    }
610
0
}
611
612
void CTxMemPool::removeConflicts(const CTransaction &tx)
613
0
{
614
    // Remove transactions which depend on inputs of tx, recursively
615
0
    AssertLockHeld(cs);
616
0
    for (const CTxIn &txin : tx.vin) {
  Branch (616:28): [True: 0, False: 0]
617
0
        auto it = mapNextTx.find(txin.prevout);
618
0
        if (it != mapNextTx.end()) {
  Branch (618:13): [True: 0, False: 0]
619
0
            const CTransaction &txConflict = *it->second;
620
0
            if (txConflict != tx)
  Branch (620:17): [True: 0, False: 0]
621
0
            {
622
0
                ClearPrioritisation(txConflict.GetHash());
623
0
                removeRecursive(txConflict, MemPoolRemovalReason::CONFLICT);
624
0
            }
625
0
        }
626
0
    }
627
0
}
628
629
/**
630
 * Called when a block is connected. Removes from mempool.
631
 */
632
void CTxMemPool::removeForBlock(const std::vector<CTransactionRef>& vtx, unsigned int nBlockHeight)
633
0
{
634
0
    AssertLockHeld(cs);
635
0
    std::vector<RemovedMempoolTransactionInfo> txs_removed_for_block;
636
0
    txs_removed_for_block.reserve(vtx.size());
637
0
    for (const auto& tx : vtx)
  Branch (637:25): [True: 0, False: 0]
638
0
    {
639
0
        txiter it = mapTx.find(tx->GetHash());
640
0
        if (it != mapTx.end()) {
  Branch (640:13): [True: 0, False: 0]
641
0
            setEntries stage;
642
0
            stage.insert(it);
643
0
            txs_removed_for_block.emplace_back(*it);
644
0
            RemoveStaged(stage, true, MemPoolRemovalReason::BLOCK);
645
0
        }
646
0
        removeConflicts(*tx);
647
0
        ClearPrioritisation(tx->GetHash());
648
0
    }
649
0
    if (m_opts.signals) {
  Branch (649:9): [True: 0, False: 0]
650
0
        m_opts.signals->MempoolTransactionsRemovedForBlock(txs_removed_for_block, nBlockHeight);
651
0
    }
652
0
    lastRollingFeeUpdate = GetTime();
653
0
    blockSinceLastRollingFeeBump = true;
654
0
}
655
656
void CTxMemPool::check(const CCoinsViewCache& active_coins_tip, int64_t spendheight) const
657
0
{
658
0
    if (m_opts.check_ratio == 0) return;
  Branch (658:9): [True: 0, False: 0]
659
660
0
    if (FastRandomContext().randrange(m_opts.check_ratio) >= 1) return;
  Branch (660:9): [True: 0, False: 0]
661
662
0
    AssertLockHeld(::cs_main);
663
0
    LOCK(cs);
664
0
    LogPrint(BCLog::MEMPOOL, "Checking mempool with %u transactions and %u inputs\n", (unsigned int)mapTx.size(), (unsigned int)mapNextTx.size());
665
666
0
    uint64_t checkTotal = 0;
667
0
    CAmount check_total_fee{0};
668
0
    uint64_t innerUsage = 0;
669
0
    uint64_t prev_ancestor_count{0};
670
671
0
    CCoinsViewCache mempoolDuplicate(const_cast<CCoinsViewCache*>(&active_coins_tip));
672
673
0
    for (const auto& it : GetSortedDepthAndScore()) {
  Branch (673:25): [True: 0, False: 0]
674
0
        checkTotal += it->GetTxSize();
675
0
        check_total_fee += it->GetFee();
676
0
        innerUsage += it->DynamicMemoryUsage();
677
0
        const CTransaction& tx = it->GetTx();
678
0
        innerUsage += memusage::DynamicUsage(it->GetMemPoolParentsConst()) + memusage::DynamicUsage(it->GetMemPoolChildrenConst());
679
0
        CTxMemPoolEntry::Parents setParentCheck;
680
0
        for (const CTxIn &txin : tx.vin) {
  Branch (680:32): [True: 0, False: 0]
681
            // Check that every mempool transaction's inputs refer to available coins, or other mempool tx's.
682
0
            indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash);
683
0
            if (it2 != mapTx.end()) {
  Branch (683:17): [True: 0, False: 0]
684
0
                const CTransaction& tx2 = it2->GetTx();
685
0
                assert(tx2.vout.size() > txin.prevout.n && !tx2.vout[txin.prevout.n].IsNull());
686
0
                setParentCheck.insert(*it2);
687
0
            }
688
            // We are iterating through the mempool entries sorted in order by ancestor count.
689
            // All parents must have been checked before their children and their coins added to
690
            // the mempoolDuplicate coins cache.
691
0
            assert(mempoolDuplicate.HaveCoin(txin.prevout));
692
            // Check whether its inputs are marked in mapNextTx.
693
0
            auto it3 = mapNextTx.find(txin.prevout);
694
0
            assert(it3 != mapNextTx.end());
695
0
            assert(it3->first == &txin.prevout);
696
0
            assert(it3->second == &tx);
697
0
        }
698
0
        auto comp = [](const CTxMemPoolEntry& a, const CTxMemPoolEntry& b) -> bool {
699
0
            return a.GetTx().GetHash() == b.GetTx().GetHash();
700
0
        };
701
0
        assert(setParentCheck.size() == it->GetMemPoolParentsConst().size());
702
0
        assert(std::equal(setParentCheck.begin(), setParentCheck.end(), it->GetMemPoolParentsConst().begin(), comp));
703
        // Verify ancestor state is correct.
704
0
        auto ancestors{AssumeCalculateMemPoolAncestors(__func__, *it, Limits::NoLimits())};
705
0
        uint64_t nCountCheck = ancestors.size() + 1;
706
0
        int32_t nSizeCheck = it->GetTxSize();
707
0
        CAmount nFeesCheck = it->GetModifiedFee();
708
0
        int64_t nSigOpCheck = it->GetSigOpCost();
709
710
0
        for (txiter ancestorIt : ancestors) {
  Branch (710:32): [True: 0, False: 0]
711
0
            nSizeCheck += ancestorIt->GetTxSize();
712
0
            nFeesCheck += ancestorIt->GetModifiedFee();
713
0
            nSigOpCheck += ancestorIt->GetSigOpCost();
714
0
        }
715
716
0
        assert(it->GetCountWithAncestors() == nCountCheck);
717
0
        assert(it->GetSizeWithAncestors() == nSizeCheck);
718
0
        assert(it->GetSigOpCostWithAncestors() == nSigOpCheck);
719
0
        assert(it->GetModFeesWithAncestors() == nFeesCheck);
720
        // Sanity check: we are walking in ascending ancestor count order.
721
0
        assert(prev_ancestor_count <= it->GetCountWithAncestors());
722
0
        prev_ancestor_count = it->GetCountWithAncestors();
723
724
        // Check children against mapNextTx
725
0
        CTxMemPoolEntry::Children setChildrenCheck;
726
0
        auto iter = mapNextTx.lower_bound(COutPoint(it->GetTx().GetHash(), 0));
727
0
        int32_t child_sizes{0};
728
0
        for (; iter != mapNextTx.end() && iter->first->hash == it->GetTx().GetHash(); ++iter) {
  Branch (728:16): [True: 0, False: 0]
  Branch (728:16): [True: 0, False: 0]
  Branch (728:43): [True: 0, False: 0]
729
0
            txiter childit = mapTx.find(iter->second->GetHash());
730
0
            assert(childit != mapTx.end()); // mapNextTx points to in-mempool transactions
731
0
            if (setChildrenCheck.insert(*childit).second) {
  Branch (731:17): [True: 0, False: 0]
732
0
                child_sizes += childit->GetTxSize();
733
0
            }
734
0
        }
735
0
        assert(setChildrenCheck.size() == it->GetMemPoolChildrenConst().size());
736
0
        assert(std::equal(setChildrenCheck.begin(), setChildrenCheck.end(), it->GetMemPoolChildrenConst().begin(), comp));
737
        // Also check to make sure size is greater than sum with immediate children.
738
        // just a sanity check, not definitive that this calc is correct...
739
0
        assert(it->GetSizeWithDescendants() >= child_sizes + it->GetTxSize());
740
741
0
        TxValidationState dummy_state; // Not used. CheckTxInputs() should always pass
742
0
        CAmount txfee = 0;
743
0
        assert(!tx.IsCoinBase());
744
0
        assert(Consensus::CheckTxInputs(tx, dummy_state, mempoolDuplicate, spendheight, txfee));
745
0
        for (const auto& input: tx.vin) mempoolDuplicate.SpendCoin(input.prevout);
  Branch (745:31): [True: 0, False: 0]
746
0
        AddCoins(mempoolDuplicate, tx, std::numeric_limits<int>::max());
747
0
    }
748
0
    for (auto it = mapNextTx.cbegin(); it != mapNextTx.cend(); it++) {
  Branch (748:40): [True: 0, False: 0]
749
0
        uint256 hash = it->second->GetHash();
750
0
        indexed_transaction_set::const_iterator it2 = mapTx.find(hash);
751
0
        const CTransaction& tx = it2->GetTx();
752
0
        assert(it2 != mapTx.end());
753
0
        assert(&tx == it->second);
754
0
    }
755
756
0
    assert(totalTxSize == checkTotal);
757
0
    assert(m_total_fee == check_total_fee);
758
0
    assert(innerUsage == cachedInnerUsage);
759
0
}
760
761
bool CTxMemPool::CompareDepthAndScore(const uint256& hasha, const uint256& hashb, bool wtxid)
762
0
{
763
    /* Return `true` if hasha should be considered sooner than hashb. Namely when:
764
     *   a is not in the mempool, but b is
765
     *   both are in the mempool and a has fewer ancestors than b
766
     *   both are in the mempool and a has a higher score than b
767
     */
768
0
    LOCK(cs);
769
0
    indexed_transaction_set::const_iterator j = wtxid ? get_iter_from_wtxid(hashb) : mapTx.find(hashb);
  Branch (769:49): [True: 0, False: 0]
770
0
    if (j == mapTx.end()) return false;
  Branch (770:9): [True: 0, False: 0]
771
0
    indexed_transaction_set::const_iterator i = wtxid ? get_iter_from_wtxid(hasha) : mapTx.find(hasha);
  Branch (771:49): [True: 0, False: 0]
772
0
    if (i == mapTx.end()) return true;
  Branch (772:9): [True: 0, False: 0]
773
0
    uint64_t counta = i->GetCountWithAncestors();
774
0
    uint64_t countb = j->GetCountWithAncestors();
775
0
    if (counta == countb) {
  Branch (775:9): [True: 0, False: 0]
776
0
        return CompareTxMemPoolEntryByScore()(*i, *j);
777
0
    }
778
0
    return counta < countb;
779
0
}
780
781
namespace {
782
class DepthAndScoreComparator
783
{
784
public:
785
    bool operator()(const CTxMemPool::indexed_transaction_set::const_iterator& a, const CTxMemPool::indexed_transaction_set::const_iterator& b)
786
0
    {
787
0
        uint64_t counta = a->GetCountWithAncestors();
788
0
        uint64_t countb = b->GetCountWithAncestors();
789
0
        if (counta == countb) {
  Branch (789:13): [True: 0, False: 0]
790
0
            return CompareTxMemPoolEntryByScore()(*a, *b);
791
0
        }
792
0
        return counta < countb;
793
0
    }
794
};
795
} // namespace
796
797
std::vector<CTxMemPool::indexed_transaction_set::const_iterator> CTxMemPool::GetSortedDepthAndScore() const
798
0
{
799
0
    std::vector<indexed_transaction_set::const_iterator> iters;
800
0
    AssertLockHeld(cs);
801
802
0
    iters.reserve(mapTx.size());
803
804
0
    for (indexed_transaction_set::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi) {
  Branch (804:64): [True: 0, False: 0]
805
0
        iters.push_back(mi);
806
0
    }
807
0
    std::sort(iters.begin(), iters.end(), DepthAndScoreComparator());
808
0
    return iters;
809
0
}
810
811
0
static TxMempoolInfo GetInfo(CTxMemPool::indexed_transaction_set::const_iterator it) {
812
0
    return TxMempoolInfo{it->GetSharedTx(), it->GetTime(), it->GetFee(), it->GetTxSize(), it->GetModifiedFee() - it->GetFee()};
813
0
}
814
815
std::vector<CTxMemPoolEntryRef> CTxMemPool::entryAll() const
816
0
{
817
0
    AssertLockHeld(cs);
818
819
0
    std::vector<CTxMemPoolEntryRef> ret;
820
0
    ret.reserve(mapTx.size());
821
0
    for (const auto& it : GetSortedDepthAndScore()) {
  Branch (821:25): [True: 0, False: 0]
822
0
        ret.emplace_back(*it);
823
0
    }
824
0
    return ret;
825
0
}
826
827
std::vector<TxMempoolInfo> CTxMemPool::infoAll() const
828
0
{
829
0
    LOCK(cs);
830
0
    auto iters = GetSortedDepthAndScore();
831
832
0
    std::vector<TxMempoolInfo> ret;
833
0
    ret.reserve(mapTx.size());
834
0
    for (auto it : iters) {
  Branch (834:18): [True: 0, False: 0]
835
0
        ret.push_back(GetInfo(it));
836
0
    }
837
838
0
    return ret;
839
0
}
840
841
const CTxMemPoolEntry* CTxMemPool::GetEntry(const Txid& txid) const
842
0
{
843
0
    AssertLockHeld(cs);
844
0
    const auto i = mapTx.find(txid);
845
0
    return i == mapTx.end() ? nullptr : &(*i);
  Branch (845:12): [True: 0, False: 0]
846
0
}
847
848
CTransactionRef CTxMemPool::get(const uint256& hash) const
849
0
{
850
0
    LOCK(cs);
851
0
    indexed_transaction_set::const_iterator i = mapTx.find(hash);
852
0
    if (i == mapTx.end())
  Branch (852:9): [True: 0, False: 0]
853
0
        return nullptr;
854
0
    return i->GetSharedTx();
855
0
}
856
857
TxMempoolInfo CTxMemPool::info(const GenTxid& gtxid) const
858
0
{
859
0
    LOCK(cs);
860
0
    indexed_transaction_set::const_iterator i = (gtxid.IsWtxid() ? get_iter_from_wtxid(gtxid.GetHash()) : mapTx.find(gtxid.GetHash()));
  Branch (860:50): [True: 0, False: 0]
861
0
    if (i == mapTx.end())
  Branch (861:9): [True: 0, False: 0]
862
0
        return TxMempoolInfo();
863
0
    return GetInfo(i);
864
0
}
865
866
TxMempoolInfo CTxMemPool::info_for_relay(const GenTxid& gtxid, uint64_t last_sequence) const
867
0
{
868
0
    LOCK(cs);
869
0
    indexed_transaction_set::const_iterator i = (gtxid.IsWtxid() ? get_iter_from_wtxid(gtxid.GetHash()) : mapTx.find(gtxid.GetHash()));
  Branch (869:50): [True: 0, False: 0]
870
0
    if (i != mapTx.end() && i->GetSequence() < last_sequence) {
  Branch (870:9): [True: 0, False: 0]
  Branch (870:9): [True: 0, False: 0]
  Branch (870:29): [True: 0, False: 0]
871
0
        return GetInfo(i);
872
0
    } else {
873
0
        return TxMempoolInfo();
874
0
    }
875
0
}
876
877
void CTxMemPool::PrioritiseTransaction(const uint256& hash, const CAmount& nFeeDelta)
878
0
{
879
0
    {
880
0
        LOCK(cs);
881
0
        CAmount &delta = mapDeltas[hash];
882
0
        delta = SaturatingAdd(delta, nFeeDelta);
883
0
        txiter it = mapTx.find(hash);
884
0
        if (it != mapTx.end()) {
  Branch (884:13): [True: 0, False: 0]
885
0
            mapTx.modify(it, [&nFeeDelta](CTxMemPoolEntry& e) { e.UpdateModifiedFee(nFeeDelta); });
886
            // Now update all ancestors' modified fees with descendants
887
0
            auto ancestors{AssumeCalculateMemPoolAncestors(__func__, *it, Limits::NoLimits(), /*fSearchForParents=*/false)};
888
0
            for (txiter ancestorIt : ancestors) {
  Branch (888:36): [True: 0, False: 0]
889
0
                mapTx.modify(ancestorIt, [=](CTxMemPoolEntry& e){ e.UpdateDescendantState(0, nFeeDelta, 0);});
890
0
            }
891
            // Now update all descendants' modified fees with ancestors
892
0
            setEntries setDescendants;
893
0
            CalculateDescendants(it, setDescendants);
894
0
            setDescendants.erase(it);
895
0
            for (txiter descendantIt : setDescendants) {
  Branch (895:38): [True: 0, False: 0]
896
0
                mapTx.modify(descendantIt, [=](CTxMemPoolEntry& e){ e.UpdateAncestorState(0, nFeeDelta, 0, 0); });
897
0
            }
898
0
            ++nTransactionsUpdated;
899
0
        }
900
0
        if (delta == 0) {
  Branch (900:13): [True: 0, False: 0]
901
0
            mapDeltas.erase(hash);
902
0
            LogPrintf("PrioritiseTransaction: %s (%sin mempool) delta cleared\n", hash.ToString(), it == mapTx.end() ? "not " : "");
903
0
        } else {
904
0
            LogPrintf("PrioritiseTransaction: %s (%sin mempool) fee += %s, new delta=%s\n",
905
0
                      hash.ToString(),
906
0
                      it == mapTx.end() ? "not " : "",
907
0
                      FormatMoney(nFeeDelta),
908
0
                      FormatMoney(delta));
909
0
        }
910
0
    }
911
0
}
912
913
void CTxMemPool::ApplyDelta(const uint256& hash, CAmount &nFeeDelta) const
914
0
{
915
0
    AssertLockHeld(cs);
916
0
    std::map<uint256, CAmount>::const_iterator pos = mapDeltas.find(hash);
917
0
    if (pos == mapDeltas.end())
  Branch (917:9): [True: 0, False: 0]
918
0
        return;
919
0
    const CAmount &delta = pos->second;
920
0
    nFeeDelta += delta;
921
0
}
922
923
void CTxMemPool::ClearPrioritisation(const uint256& hash)
924
0
{
925
0
    AssertLockHeld(cs);
926
0
    mapDeltas.erase(hash);
927
0
}
928
929
std::vector<CTxMemPool::delta_info> CTxMemPool::GetPrioritisedTransactions() const
930
0
{
931
0
    AssertLockNotHeld(cs);
932
0
    LOCK(cs);
933
0
    std::vector<delta_info> result;
934
0
    result.reserve(mapDeltas.size());
935
0
    for (const auto& [txid, delta] : mapDeltas) {
  Branch (935:36): [True: 0, False: 0]
936
0
        const auto iter{mapTx.find(txid)};
937
0
        const bool in_mempool{iter != mapTx.end()};
938
0
        std::optional<CAmount> modified_fee;
939
0
        if (in_mempool) modified_fee = iter->GetModifiedFee();
  Branch (939:13): [True: 0, False: 0]
940
0
        result.emplace_back(delta_info{in_mempool, delta, modified_fee, txid});
941
0
    }
942
0
    return result;
943
0
}
944
945
const CTransaction* CTxMemPool::GetConflictTx(const COutPoint& prevout) const
946
0
{
947
0
    const auto it = mapNextTx.find(prevout);
948
0
    return it == mapNextTx.end() ? nullptr : it->second;
  Branch (948:12): [True: 0, False: 0]
949
0
}
950
951
std::optional<CTxMemPool::txiter> CTxMemPool::GetIter(const uint256& txid) const
952
0
{
953
0
    auto it = mapTx.find(txid);
954
0
    if (it != mapTx.end()) return it;
  Branch (954:9): [True: 0, False: 0]
955
0
    return std::nullopt;
956
0
}
957
958
CTxMemPool::setEntries CTxMemPool::GetIterSet(const std::set<Txid>& hashes) const
959
0
{
960
0
    CTxMemPool::setEntries ret;
961
0
    for (const auto& h : hashes) {
  Branch (961:24): [True: 0, False: 0]
962
0
        const auto mi = GetIter(h);
963
0
        if (mi) ret.insert(*mi);
  Branch (963:13): [True: 0, False: 0]
964
0
    }
965
0
    return ret;
966
0
}
967
968
std::vector<CTxMemPool::txiter> CTxMemPool::GetIterVec(const std::vector<uint256>& txids) const
969
0
{
970
0
    AssertLockHeld(cs);
971
0
    std::vector<txiter> ret;
972
0
    ret.reserve(txids.size());
973
0
    for (const auto& txid : txids) {
  Branch (973:27): [True: 0, False: 0]
974
0
        const auto it{GetIter(txid)};
975
0
        if (!it) return {};
  Branch (975:13): [True: 0, False: 0]
976
0
        ret.push_back(*it);
977
0
    }
978
0
    return ret;
979
0
}
980
981
bool CTxMemPool::HasNoInputsOf(const CTransaction &tx) const
982
0
{
983
0
    for (unsigned int i = 0; i < tx.vin.size(); i++)
  Branch (983:30): [True: 0, False: 0]
984
0
        if (exists(GenTxid::Txid(tx.vin[i].prevout.hash)))
  Branch (984:13): [True: 0, False: 0]
985
0
            return false;
986
0
    return true;
987
0
}
988
989
0
CCoinsViewMemPool::CCoinsViewMemPool(CCoinsView* baseIn, const CTxMemPool& mempoolIn) : CCoinsViewBacked(baseIn), mempool(mempoolIn) { }
990
991
0
bool CCoinsViewMemPool::GetCoin(const COutPoint &outpoint, Coin &coin) const {
992
    // Check to see if the inputs are made available by another tx in the package.
993
    // These Coins would not be available in the underlying CoinsView.
994
0
    if (auto it = m_temp_added.find(outpoint); it != m_temp_added.end()) {
  Branch (994:48): [True: 0, False: 0]
995
0
        coin = it->second;
996
0
        return true;
997
0
    }
998
999
    // If an entry in the mempool exists, always return that one, as it's guaranteed to never
1000
    // conflict with the underlying cache, and it cannot have pruned entries (as it contains full)
1001
    // transactions. First checking the underlying cache risks returning a pruned entry instead.
1002
0
    CTransactionRef ptx = mempool.get(outpoint.hash);
1003
0
    if (ptx) {
  Branch (1003:9): [True: 0, False: 0]
1004
0
        if (outpoint.n < ptx->vout.size()) {
  Branch (1004:13): [True: 0, False: 0]
1005
0
            coin = Coin(ptx->vout[outpoint.n], MEMPOOL_HEIGHT, false);
1006
0
            m_non_base_coins.emplace(outpoint);
1007
0
            return true;
1008
0
        } else {
1009
0
            return false;
1010
0
        }
1011
0
    }
1012
0
    return base->GetCoin(outpoint, coin);
1013
0
}
1014
1015
void CCoinsViewMemPool::PackageAddTransaction(const CTransactionRef& tx)
1016
0
{
1017
0
    for (unsigned int n = 0; n < tx->vout.size(); ++n) {
  Branch (1017:30): [True: 0, False: 0]
1018
0
        m_temp_added.emplace(COutPoint(tx->GetHash(), n), Coin(tx->vout[n], MEMPOOL_HEIGHT, false));
1019
0
        m_non_base_coins.emplace(tx->GetHash(), n);
1020
0
    }
1021
0
}
1022
void CCoinsViewMemPool::Reset()
1023
0
{
1024
0
    m_temp_added.clear();
1025
0
    m_non_base_coins.clear();
1026
0
}
1027
1028
0
size_t CTxMemPool::DynamicMemoryUsage() const {
1029
0
    LOCK(cs);
1030
    // Estimate the overhead of mapTx to be 15 pointers + an allocation, as no exact formula for boost::multi_index_contained is implemented.
1031
0
    return memusage::MallocUsage(sizeof(CTxMemPoolEntry) + 15 * sizeof(void*)) * mapTx.size() + memusage::DynamicUsage(mapNextTx) + memusage::DynamicUsage(mapDeltas) + memusage::DynamicUsage(txns_randomized) + cachedInnerUsage;
1032
0
}
1033
1034
0
void CTxMemPool::RemoveUnbroadcastTx(const uint256& txid, const bool unchecked) {
1035
0
    LOCK(cs);
1036
1037
0
    if (m_unbroadcast_txids.erase(txid))
  Branch (1037:9): [True: 0, False: 0]
1038
0
    {
1039
0
        LogPrint(BCLog::MEMPOOL, "Removed %i from set of unbroadcast txns%s\n", txid.GetHex(), (unchecked ? " before confirmation that txn was sent out" : ""));
1040
0
    }
1041
0
}
1042
1043
0
void CTxMemPool::RemoveStaged(setEntries &stage, bool updateDescendants, MemPoolRemovalReason reason) {
1044
0
    AssertLockHeld(cs);
1045
0
    UpdateForRemoveFromMempool(stage, updateDescendants);
1046
0
    for (txiter it : stage) {
  Branch (1046:20): [True: 0, False: 0]
1047
0
        removeUnchecked(it, reason);
1048
0
    }
1049
0
}
1050
1051
int CTxMemPool::Expire(std::chrono::seconds time)
1052
0
{
1053
0
    AssertLockHeld(cs);
1054
0
    indexed_transaction_set::index<entry_time>::type::iterator it = mapTx.get<entry_time>().begin();
1055
0
    setEntries toremove;
1056
0
    while (it != mapTx.get<entry_time>().end() && it->GetTime() < time) {
  Branch (1056:12): [True: 0, False: 0]
  Branch (1056:12): [True: 0, False: 0]
  Branch (1056:51): [True: 0, False: 0]
1057
0
        toremove.insert(mapTx.project<0>(it));
1058
0
        it++;
1059
0
    }
1060
0
    setEntries stage;
1061
0
    for (txiter removeit : toremove) {
  Branch (1061:26): [True: 0, False: 0]
1062
0
        CalculateDescendants(removeit, stage);
1063
0
    }
1064
0
    RemoveStaged(stage, false, MemPoolRemovalReason::EXPIRY);
1065
0
    return stage.size();
1066
0
}
1067
1068
void CTxMemPool::addUnchecked(const CTxMemPoolEntry &entry)
1069
0
{
1070
0
    auto ancestors{AssumeCalculateMemPoolAncestors(__func__, entry, Limits::NoLimits())};
1071
0
    return addUnchecked(entry, ancestors);
1072
0
}
1073
1074
void CTxMemPool::UpdateChild(txiter entry, txiter child, bool add)
1075
0
{
1076
0
    AssertLockHeld(cs);
1077
0
    CTxMemPoolEntry::Children s;
1078
0
    if (add && entry->GetMemPoolChildren().insert(*child).second) {
  Branch (1078:9): [True: 0, False: 0]
  Branch (1078:9): [True: 0, False: 0]
  Branch (1078:16): [True: 0, False: 0]
1079
0
        cachedInnerUsage += memusage::IncrementalDynamicUsage(s);
1080
0
    } else if (!add && entry->GetMemPoolChildren().erase(*child)) {
  Branch (1080:16): [True: 0, False: 0]
  Branch (1080:16): [True: 0, False: 0]
  Branch (1080:24): [True: 0, False: 0]
1081
0
        cachedInnerUsage -= memusage::IncrementalDynamicUsage(s);
1082
0
    }
1083
0
}
1084
1085
void CTxMemPool::UpdateParent(txiter entry, txiter parent, bool add)
1086
0
{
1087
0
    AssertLockHeld(cs);
1088
0
    CTxMemPoolEntry::Parents s;
1089
0
    if (add && entry->GetMemPoolParents().insert(*parent).second) {
  Branch (1089:9): [True: 0, False: 0]
  Branch (1089:9): [True: 0, False: 0]
  Branch (1089:16): [True: 0, False: 0]
1090
0
        cachedInnerUsage += memusage::IncrementalDynamicUsage(s);
1091
0
    } else if (!add && entry->GetMemPoolParents().erase(*parent)) {
  Branch (1091:16): [True: 0, False: 0]
  Branch (1091:16): [True: 0, False: 0]
  Branch (1091:24): [True: 0, False: 0]
1092
0
        cachedInnerUsage -= memusage::IncrementalDynamicUsage(s);
1093
0
    }
1094
0
}
1095
1096
10.5k
CFeeRate CTxMemPool::GetMinFee(size_t sizelimit) const {
1097
10.5k
    LOCK(cs);
1098
10.5k
    if (!blockSinceLastRollingFeeBump || rollingMinimumFeeRate == 0)
  Branch (1098:9): [True: 0, False: 10.5k]
  Branch (1098:42): [True: 10.5k, False: 0]
1099
10.5k
        return CFeeRate(llround(rollingMinimumFeeRate));
1100
1101
0
    int64_t time = GetTime();
1102
0
    if (time > lastRollingFeeUpdate + 10) {
  Branch (1102:9): [True: 0, False: 0]
1103
0
        double halflife = ROLLING_FEE_HALFLIFE;
1104
0
        if (DynamicMemoryUsage() < sizelimit / 4)
  Branch (1104:13): [True: 0, False: 0]
1105
0
            halflife /= 4;
1106
0
        else if (DynamicMemoryUsage() < sizelimit / 2)
  Branch (1106:18): [True: 0, False: 0]
1107
0
            halflife /= 2;
1108
1109
0
        rollingMinimumFeeRate = rollingMinimumFeeRate / pow(2.0, (time - lastRollingFeeUpdate) / halflife);
1110
0
        lastRollingFeeUpdate = time;
1111
1112
0
        if (rollingMinimumFeeRate < (double)m_opts.incremental_relay_feerate.GetFeePerK() / 2) {
  Branch (1112:13): [True: 0, False: 0]
1113
0
            rollingMinimumFeeRate = 0;
1114
0
            return CFeeRate(0);
1115
0
        }
1116
0
    }
1117
0
    return std::max(CFeeRate(llround(rollingMinimumFeeRate)), m_opts.incremental_relay_feerate);
1118
0
}
1119
1120
0
void CTxMemPool::trackPackageRemoved(const CFeeRate& rate) {
1121
0
    AssertLockHeld(cs);
1122
0
    if (rate.GetFeePerK() > rollingMinimumFeeRate) {
  Branch (1122:9): [True: 0, False: 0]
1123
0
        rollingMinimumFeeRate = rate.GetFeePerK();
1124
0
        blockSinceLastRollingFeeBump = false;
1125
0
    }
1126
0
}
1127
1128
0
void CTxMemPool::TrimToSize(size_t sizelimit, std::vector<COutPoint>* pvNoSpendsRemaining) {
1129
0
    AssertLockHeld(cs);
1130
1131
0
    unsigned nTxnRemoved = 0;
1132
0
    CFeeRate maxFeeRateRemoved(0);
1133
0
    while (!mapTx.empty() && DynamicMemoryUsage() > sizelimit) {
  Branch (1133:12): [True: 0, False: 0]
  Branch (1133:30): [True: 0, False: 0]
1134
0
        indexed_transaction_set::index<descendant_score>::type::iterator it = mapTx.get<descendant_score>().begin();
1135
1136
        // We set the new mempool min fee to the feerate of the removed set, plus the
1137
        // "minimum reasonable fee rate" (ie some value under which we consider txn
1138
        // to have 0 fee). This way, we don't allow txn to enter mempool with feerate
1139
        // equal to txn which were removed with no block in between.
1140
0
        CFeeRate removed(it->GetModFeesWithDescendants(), it->GetSizeWithDescendants());
1141
0
        removed += m_opts.incremental_relay_feerate;
1142
0
        trackPackageRemoved(removed);
1143
0
        maxFeeRateRemoved = std::max(maxFeeRateRemoved, removed);
1144
1145
0
        setEntries stage;
1146
0
        CalculateDescendants(mapTx.project<0>(it), stage);
1147
0
        nTxnRemoved += stage.size();
1148
1149
0
        std::vector<CTransaction> txn;
1150
0
        if (pvNoSpendsRemaining) {
  Branch (1150:13): [True: 0, False: 0]
1151
0
            txn.reserve(stage.size());
1152
0
            for (txiter iter : stage)
  Branch (1152:30): [True: 0, False: 0]
1153
0
                txn.push_back(iter->GetTx());
1154
0
        }
1155
0
        RemoveStaged(stage, false, MemPoolRemovalReason::SIZELIMIT);
1156
0
        if (pvNoSpendsRemaining) {
  Branch (1156:13): [True: 0, False: 0]
1157
0
            for (const CTransaction& tx : txn) {
  Branch (1157:41): [True: 0, False: 0]
1158
0
                for (const CTxIn& txin : tx.vin) {
  Branch (1158:40): [True: 0, False: 0]
1159
0
                    if (exists(GenTxid::Txid(txin.prevout.hash))) continue;
  Branch (1159:25): [True: 0, False: 0]
1160
0
                    pvNoSpendsRemaining->push_back(txin.prevout);
1161
0
                }
1162
0
            }
1163
0
        }
1164
0
    }
1165
1166
0
    if (maxFeeRateRemoved > CFeeRate(0)) {
  Branch (1166:9): [True: 0, False: 0]
1167
0
        LogPrint(BCLog::MEMPOOL, "Removed %u txn, rolling minimum fee bumped to %s\n", nTxnRemoved, maxFeeRateRemoved.ToString());
1168
0
    }
1169
0
}
1170
1171
0
uint64_t CTxMemPool::CalculateDescendantMaximum(txiter entry) const {
1172
    // find parent with highest descendant count
1173
0
    std::vector<txiter> candidates;
1174
0
    setEntries counted;
1175
0
    candidates.push_back(entry);
1176
0
    uint64_t maximum = 0;
1177
0
    while (candidates.size()) {
  Branch (1177:12): [True: 0, False: 0]
1178
0
        txiter candidate = candidates.back();
1179
0
        candidates.pop_back();
1180
0
        if (!counted.insert(candidate).second) continue;
  Branch (1180:13): [True: 0, False: 0]
1181
0
        const CTxMemPoolEntry::Parents& parents = candidate->GetMemPoolParentsConst();
1182
0
        if (parents.size() == 0) {
  Branch (1182:13): [True: 0, False: 0]
1183
0
            maximum = std::max(maximum, candidate->GetCountWithDescendants());
1184
0
        } else {
1185
0
            for (const CTxMemPoolEntry& i : parents) {
  Branch (1185:43): [True: 0, False: 0]
1186
0
                candidates.push_back(mapTx.iterator_to(i));
1187
0
            }
1188
0
        }
1189
0
    }
1190
0
    return maximum;
1191
0
}
1192
1193
0
void CTxMemPool::GetTransactionAncestry(const uint256& txid, size_t& ancestors, size_t& descendants, size_t* const ancestorsize, CAmount* const ancestorfees) const {
1194
0
    LOCK(cs);
1195
0
    auto it = mapTx.find(txid);
1196
0
    ancestors = descendants = 0;
1197
0
    if (it != mapTx.end()) {
  Branch (1197:9): [True: 0, False: 0]
1198
0
        ancestors = it->GetCountWithAncestors();
1199
0
        if (ancestorsize) *ancestorsize = it->GetSizeWithAncestors();
  Branch (1199:13): [True: 0, False: 0]
1200
0
        if (ancestorfees) *ancestorfees = it->GetModFeesWithAncestors();
  Branch (1200:13): [True: 0, False: 0]
1201
0
        descendants = CalculateDescendantMaximum(it);
1202
0
    }
1203
0
}
1204
1205
bool CTxMemPool::GetLoadTried() const
1206
0
{
1207
0
    LOCK(cs);
1208
0
    return m_load_tried;
1209
0
}
1210
1211
void CTxMemPool::SetLoadTried(bool load_tried)
1212
0
{
1213
0
    LOCK(cs);
1214
0
    m_load_tried = load_tried;
1215
0
}
1216
1217
std::vector<CTxMemPool::txiter> CTxMemPool::GatherClusters(const std::vector<uint256>& txids) const
1218
0
{
1219
0
    AssertLockHeld(cs);
1220
0
    std::vector<txiter> clustered_txs{GetIterVec(txids)};
1221
    // Use epoch: visiting an entry means we have added it to the clustered_txs vector. It does not
1222
    // necessarily mean the entry has been processed.
1223
0
    WITH_FRESH_EPOCH(m_epoch);
1224
0
    for (const auto& it : clustered_txs) {
  Branch (1224:25): [True: 0, False: 0]
1225
0
        visited(it);
1226
0
    }
1227
    // i = index of where the list of entries to process starts
1228
0
    for (size_t i{0}; i < clustered_txs.size(); ++i) {
  Branch (1228:23): [True: 0, False: 0]
1229
        // DoS protection: if there are 500 or more entries to process, just quit.
1230
0
        if (clustered_txs.size() > 500) return {};
  Branch (1230:13): [True: 0, False: 0]
1231
0
        const txiter& tx_iter = clustered_txs.at(i);
1232
0
        for (const auto& entries : {tx_iter->GetMemPoolParentsConst(), tx_iter->GetMemPoolChildrenConst()}) {
  Branch (1232:34): [True: 0, False: 0]
1233
0
            for (const CTxMemPoolEntry& entry : entries) {
  Branch (1233:47): [True: 0, False: 0]
1234
0
                const auto entry_it = mapTx.iterator_to(entry);
1235
0
                if (!visited(entry_it)) {
  Branch (1235:21): [True: 0, False: 0]
1236
0
                    clustered_txs.push_back(entry_it);
1237
0
                }
1238
0
            }
1239
0
        }
1240
0
    }
1241
0
    return clustered_txs;
1242
0
}
1243
1244
std::optional<std::string> CTxMemPool::CheckConflictTopology(const setEntries& direct_conflicts)
1245
0
{
1246
0
    for (const auto& direct_conflict : direct_conflicts) {
  Branch (1246:38): [True: 0, False: 0]
1247
        // Ancestor and descendant counts are inclusive of the tx itself.
1248
0
        const auto ancestor_count{direct_conflict->GetCountWithAncestors()};
1249
0
        const auto descendant_count{direct_conflict->GetCountWithDescendants()};
1250
0
        const bool has_ancestor{ancestor_count > 1};
1251
0
        const bool has_descendant{descendant_count > 1};
1252
0
        const auto& txid_string{direct_conflict->GetSharedTx()->GetHash().ToString()};
1253
        // The only allowed configurations are:
1254
        // 1 ancestor and 0 descendant
1255
        // 0 ancestor and 1 descendant
1256
        // 0 ancestor and 0 descendant
1257
0
        if (ancestor_count > 2) {
  Branch (1257:13): [True: 0, False: 0]
1258
0
            return strprintf("%s has %u ancestors, max 1 allowed", txid_string, ancestor_count - 1);
1259
0
        } else if (descendant_count > 2) {
  Branch (1259:20): [True: 0, False: 0]
1260
0
            return strprintf("%s has %u descendants, max 1 allowed", txid_string, descendant_count - 1);
1261
0
        } else if (has_ancestor && has_descendant) {
  Branch (1261:20): [True: 0, False: 0]
  Branch (1261:36): [True: 0, False: 0]
1262
0
            return strprintf("%s has both ancestor and descendant, exceeding cluster limit of 2", txid_string);
1263
0
        }
1264
        // Additionally enforce that:
1265
        // If we have a child,  we are its only parent.
1266
        // If we have a parent, we are its only child.
1267
0
        if (has_descendant) {
  Branch (1267:13): [True: 0, False: 0]
1268
0
            const auto& our_child = direct_conflict->GetMemPoolChildrenConst().begin();
1269
0
            if (our_child->get().GetCountWithAncestors() > 2) {
  Branch (1269:17): [True: 0, False: 0]
1270
0
                return strprintf("%s is not the only parent of child %s",
1271
0
                                 txid_string, our_child->get().GetSharedTx()->GetHash().ToString());
1272
0
            }
1273
0
        } else if (has_ancestor) {
  Branch (1273:20): [True: 0, False: 0]
1274
0
            const auto& our_parent = direct_conflict->GetMemPoolParentsConst().begin();
1275
0
            if (our_parent->get().GetCountWithDescendants() > 2) {
  Branch (1275:17): [True: 0, False: 0]
1276
0
                return strprintf("%s is not the only child of parent %s",
1277
0
                                 txid_string, our_parent->get().GetSharedTx()->GetHash().ToString());
1278
0
            }
1279
0
        }
1280
0
    }
1281
0
    return std::nullopt;
1282
0
}
1283
1284
util::Result<std::pair<std::vector<FeeFrac>, std::vector<FeeFrac>>> CTxMemPool::CalculateChunksForRBF(CAmount replacement_fees, int64_t replacement_vsize, const setEntries& direct_conflicts, const setEntries& all_conflicts)
1285
0
{
1286
0
    Assume(replacement_vsize > 0);
1287
1288
0
    auto err_string{CheckConflictTopology(direct_conflicts)};
1289
0
    if (err_string.has_value()) {
  Branch (1289:9): [True: 0, False: 0]
1290
        // Unsupported topology for calculating a feerate diagram
1291
0
        return util::Error{Untranslated(err_string.value())};
1292
0
    }
1293
1294
    // new diagram will have chunks that consist of each ancestor of
1295
    // direct_conflicts that is at its own fee/size, along with the replacement
1296
    // tx/package at its own fee/size
1297
1298
    // old diagram will consist of the ancestors and descendants of each element of
1299
    // all_conflicts.  every such transaction will either be at its own feerate (followed
1300
    // by any descendant at its own feerate), or as a single chunk at the descendant's
1301
    // ancestor feerate.
1302
1303
0
    std::vector<FeeFrac> old_chunks;
1304
    // Step 1: build the old diagram.
1305
1306
    // The above clusters are all trivially linearized;
1307
    // they have a strict topology of 1 or two connected transactions.
1308
1309
    // OLD: Compute existing chunks from all affected clusters
1310
0
    for (auto txiter : all_conflicts) {
  Branch (1310:22): [True: 0, False: 0]
1311
        // Does this transaction have descendants?
1312
0
        if (txiter->GetCountWithDescendants() > 1) {
  Branch (1312:13): [True: 0, False: 0]
1313
            // Consider this tx when we consider the descendant.
1314
0
            continue;
1315
0
        }
1316
        // Does this transaction have ancestors?
1317
0
        FeeFrac individual{txiter->GetModifiedFee(), txiter->GetTxSize()};
1318
0
        if (txiter->GetCountWithAncestors() > 1) {
  Branch (1318:13): [True: 0, False: 0]
1319
            // We'll add chunks for either the ancestor by itself and this tx
1320
            // by itself, or for a combined package.
1321
0
            FeeFrac package{txiter->GetModFeesWithAncestors(), static_cast<int32_t>(txiter->GetSizeWithAncestors())};
1322
0
            if (individual >> package) {
  Branch (1322:17): [True: 0, False: 0]
1323
                // The individual feerate is higher than the package, and
1324
                // therefore higher than the parent's fee. Chunk these
1325
                // together.
1326
0
                old_chunks.emplace_back(package);
1327
0
            } else {
1328
                // Add two points, one for the parent and one for this child.
1329
0
                old_chunks.emplace_back(package - individual);
1330
0
                old_chunks.emplace_back(individual);
1331
0
            }
1332
0
        } else {
1333
0
            old_chunks.emplace_back(individual);
1334
0
        }
1335
0
    }
1336
1337
    // No topology restrictions post-chunking; sort
1338
0
    std::sort(old_chunks.begin(), old_chunks.end(), std::greater());
1339
1340
0
    std::vector<FeeFrac> new_chunks;
1341
1342
    /* Step 2: build the NEW diagram
1343
     * CON = Conflicts of proposed chunk
1344
     * CNK = Proposed chunk
1345
     * NEW = OLD - CON + CNK: New diagram includes all chunks in OLD, minus
1346
     * the conflicts, plus the proposed chunk
1347
     */
1348
1349
    // OLD - CON: Add any parents of direct conflicts that are not conflicted themselves
1350
0
    for (auto direct_conflict : direct_conflicts) {
  Branch (1350:31): [True: 0, False: 0]
1351
        // If a direct conflict has an ancestor that is not in all_conflicts,
1352
        // it can be affected by the replacement of the child.
1353
0
        if (direct_conflict->GetMemPoolParentsConst().size() > 0) {
  Branch (1353:13): [True: 0, False: 0]
1354
            // Grab the parent.
1355
0
            const CTxMemPoolEntry& parent = direct_conflict->GetMemPoolParentsConst().begin()->get();
1356
0
            if (!all_conflicts.count(mapTx.iterator_to(parent))) {
  Branch (1356:17): [True: 0, False: 0]
1357
                // This transaction would be left over, so add to the NEW
1358
                // diagram.
1359
0
                new_chunks.emplace_back(parent.GetModifiedFee(), parent.GetTxSize());
1360
0
            }
1361
0
        }
1362
0
    }
1363
    // + CNK: Add the proposed chunk itself
1364
0
    new_chunks.emplace_back(replacement_fees, int32_t(replacement_vsize));
1365
1366
    // No topology restrictions post-chunking; sort
1367
0
    std::sort(new_chunks.begin(), new_chunks.end(), std::greater());
1368
0
    return std::make_pair(old_chunks, new_chunks);
1369
0
}